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Q: Do we need deep learning for 
software analytics?
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Q: Do we need deep learning for 
software analytics?

A: Maybe not



Another FSE’17 Paper on Deep Learning
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We Promote Open Science
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Make data available

ASE’16
Our code & data at: 

https://github.com/WeiFoo/easyOverHard

https://github.com/WeiFoo/easyOverHard


Fisher et al[5]:

• Large quantities of low value data 
to small set of higher value data. 

• Luxuries of interactivity, direct 
manipulation and fast system 
response are gone.

More complex methods:
• New feature selection[1].

• New feature discovering[2].

  Costs:

• Learn control settings: weeks to 

years[3,4]

• Deep learning: 

– Lam et al.: weeks of CPU[6].

– Gu et al.:240 hours of GPU[13].

Faster or More Complex SE Analytics?
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Faster vs. More Complex SE Analytics
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Does the improvement worth the cost ?
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 A case study on deep learning 



Deep Learning 

• Built on multiple layers of neural networks.

• Composing simple but non-linear modules to explore 
high-dimensional data [42].
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Deep Learning in SE
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Deep Learning in SE
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Deep Learning in SE
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Trade-off: Benefit vs. Cost ?



Faster Software Analytics
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Reproducible, Faster method!
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Method



Case Study

Linkable Questions Prediction on 
StackOverflow
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Duplicate

Direct 
Link

Indirect 
Link

Isolated
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Learners 

• Baseline:
– SVM

• Xu’s deep learning method:
– CNN(convolutional neural networks)

• Our proposed method:
– SVM + DE
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Differential Evolution for Hyper-parameter Tuning



Tuning Algorithm: Differential Evolution*
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Frontier = Pick N options at random # e.g. N =10

M times repeat : # e.g. M = 5

for Parent in Frontier:

●  Select a, b, c = three other frontier items.
●  Candidate = a + f*(b-c) # ish
●  if Candidate “better”, replace Parent.

* Storn, Rainer, and Kenneth Price. "Differential evolution–a simple and efficient heuristic for global optimization 
over continuous spaces." Journal of global optimization 11.4 (1997): 341-359.



Experimental Setup
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Experimental Setup
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Experimental Setup
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Experimental Setup
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Experimental Setup
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Results



Research Questions
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RQ1: Can we reproduce Xu’s baseline results?

RQ2: DE+SVM outperforms Xu’s deep learning method?

RQ3: DE+SVM faster than Xu’s deep learning method?
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RQ1: Reproduce Xu’s Baseline Results?

Comparison of our baseline method with Xu’s baseline. 
Best scores are marked in bold.
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RQ1: Reproduce Xu’s Baseline Results?

Comparison of our baseline method with Xu’s baseline. 
Best scores are marked in bold.

 Score Delta(F1) = Our SVM - Xu’s SVM = -0.054
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RQ1: Reproduce Xu’s Baseline Results?



RQ1: Reproduce Xu’s Baseline Results?
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Overall, we got similar results to the baseline method reported in XU’s study



Research Questions

RQ1: Can we reproduce Xu’s baseline results?

RQ2: DE+SVM outperforms Xu’s deep learning method?

RQ3: DE+SVM faster than Xu’s deep learning method?
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RQ2: DE+SVM Outperforms Xu’s CNN?
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RQ2: DE+SVM Outperforms Xu’s CNN?
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Deep learning(CNN)  does not have any performance advantage over DE+SVM.



Research Questions
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RQ1: Can we reproduce Xu’s baseline results?

RQ2: DE+SVM outperforms Xu’s deep learning method?

RQ3: DE+SVM faster than Xu’s deep learning method?



RQ3: Faster than Xu’s CNN?
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DE+SVM is 84X faster than deep learning(CNN) in terms of model building.
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Conclusion



Observation

 Simple DE tuning performs 
                           Better & Faster than deep learning!
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  Q: Do we still need deep learning 
for software analytics?
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  Q: Do we still need deep learning 
for software analytics?

A: Maybe not
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  Q: Do we still need deep learning 
for software analytics?

Easy first before hard

A: Maybe not



Implication

For future deep learning in SE:

• FINE TUNE your baseline methods

• Do not ignore the COST of deep learning.

• SHARE your code and data if possible
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tiny.cc/seacraft

Why Seacraft?
● Successor of PROMISE repo, which contains a lot of SE artifacts.
● No data limits;
● Provides DOI for every submission (aka, easy citation);
● Automatic updates if linked to github project.

http://tiny.cc/seacraft
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