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Yang et al. 
reported: unsupervised predictors outperformed supervised 
predictors for effort-aware Just-In-Time defect prediction.

Implied: dramatic simplification of a seemingly complex task.

We 
Repeated and reflect Yang et al. results.
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General Lessons
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       Open Science



Yang’s Unsup Methods in Precision
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Red is bad!

Yang, Yibiao, et al. "Effort-aware just-in-time defect prediction: simple unsupervised models could be better than supervised 
models." FSE’16



arXiv.org Effect
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X.        ACM Transactions on Software Engineering and Methodology(TOSEM)                                         ?                ?



We Promote Open Science
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FSE’16

TSE’13

Our code & data at: 

https://github.com/WeiFoo/RevisitUnsupervised

https://github.com/WeiFoo/RevisitUnsupervised
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Methods



Yang et al’s Method: Core Idea

10[Koru 2010]Koru, Gunes, et al. "Testing the theory of relative defect proneness for closed-source software." Empirical 
Software Engineering 15.6 (2010): 577-598.

Koru et al [Koru 2010] suggest that 
“Smaller modules are proportionally more 
defect-prone and hence should be 
inspected first!”

AUC

bad         other

recall

Area under the curve of Recall/LOC

● Bad = modules predicted defective

● Other = all other modules

● Sort each increasing by LOC

● Track the recall

20% effort 

LOC



Yang et al’s Unsupervised Method

Build 12 unsupervised models, on testing data:
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20% effort

10% effort
Predicted as
 “Defective”

Yang et al report:
Aggregating performance over all projects, many simple unsupervised models 
perform better than supervised models.
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OneWay



OneWay is not “the Way”
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OneWay:

  “The alternative way, maybe not the best way!”
                   
                                                                           --Wei 



OneWay
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Select the best one(e.g.: NS)

OneWay

 Testing  data Supervised  data

Build 12 learners Test with NS
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Results



• Recall

• Popt

• F1

• Precision

Our Evaluation Metrics
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Our Result Format
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Bugzilla

Platform

Mozilla

JDT

Columba

PostgreSQL

Blue: Better

Black: Similar

Red: Worse

Report results on a project-by-project basis.
Recall



Research Questions

• All unsupervised predictors better than supervised? 

• Is it beneficial to use supervised data? 

• OneWay better than standard supervised predictors?
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RQ1: All unsupervised predictors better? 
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Recall: LT and AGE are better; Others are not.

Popt: the similar pattern as Recall.

Recall Popt



RQ1: All unsupervised predictors better? 
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F1: Only two cases better,  LT on Bugzilla; AGE on PostgreSQL;

Precision: All are worse than the best supervised learner!

F1 Precision



RQ1: All unsupervised predictors better? 
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Not all unsupervised predictors perform better than 
supervised predictors for each project and for 
different evaluation measures.

F1 Precision



Research Questions

• All unsupervised predictors better than supervised? 

• Is it beneficial to use supervised data? 

• OneWay better than standard supervised predictors?
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RQ2:Is it beneficial to use supervised data? 
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Recall: OneWay  was only outperformed by LT in 4/6 data sets.

Popt: The similar pattern as Recall.

Recall Popt



RQ2:Is it beneficial to use supervised data? 
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F1:  EXP/REXP/SEXP performs better than OneWay only on Mozilla.

Precision: Similar as F1 but more data sets. 

F1 Precision



RQ2:Is it beneficial to use supervised data? 

26

As a simple supervised predictor, OneWay performs 
better than most unsupervised predictors.

F1 Precision



Research Questions

• All unsupervised predictors better than supervised? 

• Is it beneficial to use supervised data? 

• OneWay better than standard supervised predictors?
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RQ3:OneWay better than supervised ones?
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F1 PrecisionRecall Popt
● Better than supervised learners in terms of Recall & Popt;
● It performs just as well as other learners for F1.
● As for Precision, worse!
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Conclusion



Lessons Learned
• Don’t aggregate results over multiple data sets.

– Different conclusions: Yang et al.
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Lessons Learned
• Don’t aggregate results over multiple data sets.

– Different conclusions: Yang et al.

• Do use supervised data.

– Unsupervised learners’ are unstable.

• Do use multiple evaluation criteria.

– Results vary for different evaluation criteria.

• Do share code and data.

– Easy reproduction.

• Do post pre-prints to arXiv.org.

– Saved two years.
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tiny.cc/seacraft

Why Seacraft?
● Successor of PROMISE repo, which contains a lot of SE artifacts.
● No data limits;
● Provides DOI for every submission (aka, easy citation);
● Automatic updates if linked to github project.

http://tiny.cc/seacraft
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