NC STATE UNIVERSITY

a,oftwa e
e I eryineeriry, then LC State ...
4____________>—C

Revisiting Unsupervised Learning
for Defect Prediction

Wei Fu Tim Menzies
wfu@ncsu.edu tim.menzies@agmail.com
http://weifu.us http://menzies.us

Find these slides at: http://tiny.cc/unsup

Sep, 2017

NC STATE UNIVERSITY L

mailto:wfu@ncsu.edu
mailto:tim.menzies@gmail.com
http://weifu.us
http://menzies.us
http://tiny.cc/unsup

On the market

(expected graduation:May,2018)

Research Areas: Publications:
e Machine learning FSE: 2

e SBSE ASE: 1

e Evolutionary algorithms TSE: 1

e Hyper-parameter tuning IST: 1

Under Review: 2

Tim Menzies
(advisor)

NC STATE UNIVERSITY 2

http://weifu.us

Yang et al.

reported: unsupervised predictors outperformed supervised
predictors for effort-aware Just-In-Time defect prediction.

Implied: dramatic simplification of a seemingly complex task.

We

Repeated and reflect Yang et al. results.

NC STATE UNIVERSITY

General Lessons

Open Science

NC STATE UNIVERSITY 4

Yang’s Unsup Methods in Precision

Precision .
Supervised Unsupervised

Red is bad!

00 06 00 06 00 06 00 06 0.0 06 00 0.6

-
= - o . ——) R
?’%\j{\ 3 bb‘% R L O $<«, ({_‘OQ NO TN & S @‘fg <§

Yang, Yibiao, et al. "Effort-aware just-in-time defect prediction: simple unsupervised models could be better than supervise5d

NC STATE UNIVERSITY models." FSE'16

arXiv.org Effect

Singapore
Nanjing Raleigh Hangzhou Nanjing Raleigh
Mar 11, 2016 Feb 28, 2017 Apr 6, 2017 Apr 7, 2017 Oct, 2017
® ® @ - —— >

[Yang etal. FSE'16] [Fuetal. FSE'17] [Huang etal. ICSME’17] [Liu etal. ESEM'17] [Fu et al.arXiv'17]

Dr. Zhou Dr. Menzies Dr. Xia&Dr. Lo Dr. Zhou Dr. Menzies

SINGAPORE MANAGEMENT
UNIVERSITY

NC STATE UNIVERSITY 6

Categories > Engineering & Computer Science > Software Systems ~

Publication h5-index h5-median
3 |- International Conference on Software Engineering 68 91
2. IEEE Transactions on Software Engineering 52 80
3. Journal of Systems and Software 51 73
4. ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI) 50 67
5. ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL) 46 68
6. Information and Software Techr 45 68
43 ACM SIGSOFT International Sy 43 64
8. Mining Software Repositories O e 39 57
9. |IEEE Software Scholar 38 54
10. ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming (PPOPP) 37 55
1. ACIV! SI_GPLAN International Conference on Object-Oriented Programming, Systems, Languages, and 37 51
Applications (OOPSLA) e
12. Empirical Software Engineering 37 48
13. International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS) 36 55
_>I 14. arXiv Software Engineering (cs.SE) 36 50
15. International Symposium on Software Testing and Analysis 31 50
16. IEEE/ACM International Conference on Automated Software Engineering (ASE) 31 44
17. Software & Systems Modeling 31 43
18. IEEE International Conference on Software Maintenance 29 41
19. IEEE International Conference on Software Testing, Verification and Validation (ICST) 29 41
20. arXiv Programming Languages (cs.PL) 29 40
? ?

—P| x.

ACM Transactions on Software Engineering and Methodology(TOSEM)

NC STATE UNIVERSITY

We Promote Open Science

A Large-Scale Empirical Study of
Just-in-Time Quality Assurance

Yasutaka Kamei, Member, IEEE, Emad Shihab, Bram Adams, Member, IEEE,
Ahmed E. Hassan, Member, IEEE, Audris Mockus, Member, IEEE, Anand Sinha, and
Naoyasu Ubayashi, Member, IEEE

Abstract—Defect prediction models are a well-known technique for identifying defect-prone files or packages such that practitioners
can allocate their quality assurance efforts (e.g., testing and code reviews). However, once the critical files or packages have been
identified, developers still need to spend considerable time drilling down to the functions or even code snippets that should be reviewed
or tested. This makes the approach too time consuming and impractical for large software systems. Instead, we consider defect

prediction models that focus on identifying defect-prone (“risky”) software changes instead of files or packages. We refer to this type of
quality assurance activity as “Just-In-Time Quality Assurance,” because developers can review and test these risky changes while they

are still fresh in their minds (i.e., at check-in time*
characteristics of a software change, such as the
source and five commercial projects from multiple
defect with an average accuracy of 68 percent anc
review changes, we find that using only 20 perce

rzdl di
the mit risi e thi
Inde: s software metffes, n

NC STATE UNIVERSITY

L il a s s ATALS s BT an

e ak BXakaie

a2 aaaa

Effort-Aware Just-in-Time Defect Prediction: Simple
Unsupervised Models Could Be Better Than Supervised
Models

Yibiao Yang', Yuming Zhou'~

, Jinping Liu', Yangyang Zhao', Hongmin Lu’, Lei Xu',

' Baowen Xu', and Hareton Leung’
“ Department of Computer Science and Technology, Nanjing University, China
lDepartment of Computing, Hong Kong Polytechnic University, Hong Kong, China

ABSTRACT
Unsupervised models do not reguire the defect data to build
the prediction models and hence incur a low building cost
and gain a wide application range. Consequently, it would
be more desirable for practitioners to apply unsupervised
models in effort-aware just-in-time (JIT) defect prediction
if they can predict defect-inducing changes well. However,
little is currently known on their prediction effectiveness in
this context. We aim to investigate the predictive power
of simple unsupervised models in effort-aware JIT defect
prediction, especially compared with the state-of-the-art su-
pervised models in the recent literature. We first use the most
commonly used change metrics to build simple unsupervised
models. Then, we compare these unsupervised models with
the state-of-the-art supervised models under cross-validation,
tnnc\\\ lsc-cmss—mhdanon and across-pro, Jccl prediction set-

wh Y|

consecutive commits in a given period of time) that introduce
one or several defects into the source code in a software
system [37). Compared with traditional defect prediction
at module (e.g. package, file, or class) level, JIT defect
prediction is a fine granularity defect prediction. As stated
by Kamei et al. [13], it allows developers to inspect an order
of magnitude smaller number of SLOC (source lines of code)
to find latent defects. This could provide large savings in
effort over traditional coarser granularity defect predictions.
In particular, JIT defect prediction can be performed at
check-in time [13]. This allows developers to inspect the code
changes for finding the latent defects when the change details
are still fresh in their minds. As a result, it is pessible to
find the latent defects faster. Furthermore, compared with
conventional non-effort-aware defect prediction, effort-aware
JIT defect prediction takes into account the effort required
to inspect the modified code for a change [13]. Consequently,
effort-aware JIT defect prediction would be more practical
for practitioners, as it enables them to find more latent
defects per unit code inspection effort. Currently, there is
a significant strand of interest in developing effective effort-
aware JIT defect prediction models (7, 13].

THANKS!

Our code & data at:

https://github.com/\WeiFoo/RevisitUnsupervised

https://github.com/WeiFoo/RevisitUnsupervised

Methods

NC STATE UNIVERSITY 9

Yang et al’s Method: Core Idea

recall 209 effort
Koru et al [korv 20101 syggest that [_Dad] other
LOC

“Smaller modules are proportionally more

defect-prone and hence should be Area under the curve of Recall/LOC
inspected first!”

Bad = modules predicted defective
Other = all other modules

Sort each increasing by LOC
Track the recall

[Koru 2010]Koru, Gunes, et al. "Testing the theory of relative defect proneness for closed-source software." Empirical 10

NC STATE UNIVERSITY software Engineering 15.6 (2010): 577-598.

Yang et al’s Unsupervised Method

Build 12 unsupervised models, on testing data:

NF | NS| LT | FIX| ND | NDEV | EXP | REXP | SEXP | NUC | AGE | Entropy | LOC | Label
10%effot | 0] 3] 11| 1] 1] 23 | 2] 12 | 4 2 | 8 03 | 32 1B
— g 3 24 g ; 2 3 133 ; ; 6 8-2 4; ; Predicted as
1 9 5 5 4 i 1 ? “D R
0 efective
20%effot — T332 o [3| 6 7 9 3 5 | 3 02 |103| 2
} 0|0/537|/ 0] 2| 8 2 | 22 | 9 7 | 12 03 | 20 | ?

Yang et al report:

Aggregating performance over all projects, many simple unsupervised models
perform better than supervised models.

NC STATE UNIVERSITY 11

OneWay

NC STATE UNIVERSITY 12

OneWay is not “the Way”

OneWay:

“The alternative way, maybe not the best way!”

--Wei

NC STATE UNIVERSITY 13

OneWay

Supervised data

X1 | X2 | LT | ... | Xn | Label

> OneWay)

[y

Build 12 learners

NC STATE UNIVERSITY

Testing data

Select the best one(e.g.: NS)

X1 | X2 | NS | .. | Xn | Label
123 1 |..|33 &

2 (11| 2 |..|22 i

2| 6| 5 .| 18 v
10(9 | 10 |..| 7 ?
0|0 |12)..]|22 7

Test with NS

14

Results

NC STATE UNIVERSITY 15

Our Evaluation Metrics

 Recall

* Popt

— = prediction model
Random model

= Optimal model
Worst model

20 40 60 80 100

. F1

0

%defect-inducing change

0 20 40 60 80 100
%code churn

* Precision

S(optimal) — S(m)
S(optimal) — S(worst)

Popt(m) =1-

NC STATE UNIVERSITY 16

Our Result Format

Supervised Unsupervised
Bugzilla S TS N S == I | === B
= %@%@ ! a‘--‘a@@ i RE EE%D
Platform g é:—_.—:_r-_-_----égé__- Téé‘é%é'
L - = = = & &
S Blue: Better
Mozilla < ; ol s - =3
o e T T ' — ol T e - - -
g oo B == _-=E==""3-- Black: Similar
< 't_:r__:______ _=___T i, < e 3 S
o| TEm==T_HN™ _==e=={]" Red: Worse
o '
Columba o] = M 1 PO W -
= R R [=— [R —— S e
i Rl T N = s aliloai il =TT o
o- Py . . P e e T - -
PostgreSQL 2| = : Tob iy BT i
8 ™ =TT O | sl et

Recall
Report results on a project-by-project basis.

NC STATE UNIVERSITY 17

Research Questions

« All unsupervised predictors better than supervised?
 Is it beneficial to use supervised data?

 OneWay better than standard supervised predictors?

NC STATE UNIVERSITY 18

Research Questions

« All unsupervised predictors better than supervised?

NC STATE UNIVERSITY 19

RQ1: All unsupervised predictors better?

Supervised Unsupervised

Supervised - Unsupervised

0.0 06 00 06 0.0 0.6 0.0 06 00 06 0.0 06
00 06 00 06 00 06 0.0 06 0.0 06 0.0 06

Recall

Recall: LT and AGE are better; Others are not.

Popt: the similar pattern as Recall.

NC STATE UNIVERSITY 20

RQ1: All unsupervised predictors better?

Supervised Unsupervised Supervised Unsupervised

06 00 06 00 06 00 06 0.0 0.6 0.0 0.6

00 06 00 06 00 06 00 06 0.0 06 0.0 06

= s
-© o

0.0

Precision

F1: Only two cases better, LT on Bugzilla; AGE on PostgreSQL,;
Precision: All are worse than the best supervised learner!

NC STATE UNIVERSITY 21

RQ1: All unsupervised predictors better?

Supervised " Unsupervised Supervised Unsupervised

06 00 06 00 06 00 06 0.0 0.6 0.0 0.6

00 06 00 06 00 06 00 06 0.0 06 0.0 06

0.0

F1 Precision

Not all unsupervised predictors perform better than
supervised predictors for each project and for
different evaluation measures.

NC STATE UNIVERSITY 22

Research Questions

Is it beneficial to use supervised data?

NC STATE UNIVERSITY 23

RQ2:Is it beneficial to use supervised data?
%supervised Pr?posed JUnsupérvised Pr?posed

00 06 0.0 06 00 06 00 06 00 0.6 0.0 06
0.0 06 0.0 06 00 06 00 0.6 00 0.6 0.0 06

Popt

Recall: OneWay was only outperformed by LT in 4/6 data sets.
Popt: The similar pattern as Recall.

NC STATE UNIVERSITY 24

RQ2:Is it beneficial to use supervised data?

Unsupervised Proposed Unsupervised Proposed

00 04 00 04 00 04000 0200 04 00 06
00 04 00 04 00 04000 020 04 00 06

Precision

F1: EXP/REXP/SEXP performs better than OneWay only on Mozilla.

Precision: Similar as F1 but more data sets.

NC STATE UNIVERSITY 25

RQ2:Is it beneficial to use supervised data?

Unsupervised Proposed Unsupervised Proposed

00 04 00 04 00 04000 0200 04 00 06
00 04 00 04 00 04000 020 04 00 06

Precision

As a simple supervised predictor, OneWay performs
better than most unsupervised predictors.

NC STATE UNIVERSITY 26

Research Questions

 OneWay better than standard supervised predictors?

NC STATE UNIVERSITY 27

RQ3:0neWay better than supervised ones?

Supervised Proposed Supervised Proposed Supervised Proposed Supervised = Proposed
© 3 o s -t = ol + - ~ - - © ;
o ' o (=) ' ' ' o '
= e e e e - : :
< M b < < . <
o 0 o o o O
«© : © © «© '
= =0 = = i -um - o -= -
o ' o o o O
(q : (q ________ (Q ©w :
(= L _;_) o ' o [=} % - !
C’. : —_ O C> — — e——- o L pr— _%.-:._-
o 1 o o . o ¥
< - of = - —---- © = _ :
o o —— o o o s i '
= $ o= =1 = = o =T
pea v e = = b !ﬂ— == |
w0 ' ({=) e o e (=} e} ' '
S e — S = = = s E B o
¢ = = = | e
o : =) = o] &= L W L o] = it S
o e o o o = o, |
© ' 4 © — «© ©w : E '
= = = Sl Wes o B o B O SO I i e — L B
d b i —_ 4 — Y TR =0 "= wndiliN — il Y R A —
o o o o
<X* ok D> &) <> ok D> o) <* o% D> &) <Xt o< > o >3
AN DISIN > A (SN A e QD > AS B D
s - ol il s o(\e,*\ SR ST RIS ooe'@ 2P N Al N oav\ 2O Ay o
Recall Popt F1 Precision

e Better than supervised learners in terms of Recall & Popt;
e [t performs just as well as other learners for F1.
e As for Precision, worse!

NC STATE UNIVERSITY 28

Conclusion

NC STATE UNIVERSITY 29

Lessons Learned

« Don’t aggregate results over multiple data sets.

— Different conclusions: Yang et al.

NC STATE UNIVERSITY 30

Lessons Learned

« Don’t aggregate results over multiple data sets.

— Different conclusions: Yang et al.
* Do use supervised data.

— Unsupervised learners’ are unstable.

NC STATE UNIVERSITY 31

Lessons Learned

« Don’t aggregate results over multiple data sets.

— Different conclusions: Yang et al.
* Do use supervised data.

— Unsupervised learners’ are unstable.
« Do use multiple evaluation criteria.

— Results vary for different evaluation criteria.

NC STATE UNIVERSITY 32

Lessons Learned

« Don’t aggregate results over multiple data sets.

— Different conclusions: Yang et al.
* Do use supervised data.
— Unsupervised learners’ are unstable.
« Do use multiple evaluation criteria.
— Results vary for different evaluation criteria.
* Do share code and data.
— [Easy reproduction.
* Do post pre-prints to arXiv.org.

— Saved two years.

NC STATE UNIVERSITY 33

Why Seacraft?

Successor of PROMISE repo, which contains a lot of SE artifacts.
No data limits;

Provides DOI for every submission (aka, easy citation);
Automatic updates if linked to github project.

NC STATE UNIVERSITY 34

http://tiny.cc/seacraft

On the market

(expected graduation: May,2018)

(Machine learning, SBSE,
Evolutionary algorithms,
Hyper-parameter tuning)

OPEN science is FASTER science

Publications:

FSE: 2

ASE: 1

TSE: 1

IST: 1

Under Review: 2

NC STATE UNIVERSITY 35

http://weifu.us

Reference

1. Kamei, Yasutaka, et al. "Revisiting common bug prediction findings using effort-aware models." Software Maintenance (ICSM), 2010 IEEE International Conference on.
IEEE, 2010.

2. Arisholm, Erik, Lionel C. Briand, and Eivind B. Johannessen. "A systematic and comprehensive investigation of methods to build and evaluate fault prediction models."
Journal of Systems and Software 83.1 (2010): 2-17.

3. Menzies, Tim, Jeremy Greenwald, and Art Frank. "Data mining static code attributes to learn defect predictors." IEEE transactions on software engineering 33.1 (2007):
2-13.

4. Rahman, Foyzur, Daryl Posnett, and Premkumar Devanbu. "Recalling the imprecision of cross-project defect prediction." Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering. ACM, 2012.

5. Mende, Thilo, and Rainer Koschke. "Effort-aware defect prediction models." Software Maintenance and Reengineering (CSMR), 2010 14th European Conference on.
IEEE, 2010.

6. D’Ambros, Marco, Michele Lanza, and Romain Robbes. "Evaluating defect prediction approaches: a benchmark and an extensive comparison." Empirical Software
Engineering 17.4-5 (2012): 531-577.

7. Kamei, Yasutaka, et al. "A large-scale empirical study of just-in-time quality assurance." IEEE Transactions on Software Engineering 39.6 (2013): 757-773.

8. Yang, Yibiao, et al. "Effort-aware just-in-time defect prediction: simple unsupervised models could be better than supervised models." Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineering. ACM, 2016.

NC STATE UNIVERSITY

