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From Last Exam

Why study simplicity? cost, speed
When this won’t work? e-Dominance

What's the difference between SE/general data mining? under-exploited simplicities
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My Thesis:

Software analytics should be easier.
Software analytics can be easier.

But it can be very hard to show it can be easier.
And, sometimes, it can be too easy.

Future work:

When to be simpler.
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My Thesis

Software analytics should be easier.
Software analytics can be easier. [Fu et al. IST 2016]
But it can be very hard to show it can be easier. [Fu et al. FSE 2017 A

And, sometimes, it can be too easy. [Fu et al. FSE 2017 B
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Software Analytics

Estimate of What? A

Effort estimation
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A Typical Software Analytics Framework
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Data Mining Static Code Attributes
to Learn Defect Predictors

Tim Menzies, Member, IEEE, Jeremy Greenwald, and Art Frank

Abstract—The value of using static code attributes to learn defect predictors has been widely debated. Prior work has explored issues
like the merits of “McCabes versus Halstead versus lines of code counts” for generating defect predictors. We show here that such
debates are irrelevant since how the attributes are used to build predictors is much more important than which particular attributes are
used. Also, contrary to prior pessimism, we show that such defect predictors are demonstrably useful and, on the data studied here,
yield predictors with a mean probability of detection of 71 percent and mean false alarms rates of 25 percent. These predictors would
be useful for prioritizing a resource-bound exploration of code that has yet to be inspected.

Index Terms—Data mining detect prediction, McCabe, Halstead, artifical intelligence, empirical, naive Bayes.

+

Decision Tree, Naive Bayes
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Automatically Learning Semantic Features for Defect
Prediction

Song Wang, Taiyue Liu and Lin Tan
Electrical and Computer Engineering, University of Waterloo, Canada
{song.wang, t67liu, lintanj@uwaterloo.ca

ABSTRACT

Software defect prediction, which predicts defective code re-
gions, can help developers find bugs and prioritize their test-
ing efforts. To build accurate prediction models, previous
studies focus on manually designing features that encode the
characteristics of programs and exploring different machine
learning algorithms. Existing traditional features often fail
to capture the semantic differences of programs, and such a
capability is needed for building accurate prediction models.

To bridge the gap between programs’ semantics and
defect prediction features, this paper proposes to leverage a
powerful representation-learning algorithm, deep learning,

to learn ic repr ion of programs icall work (NN)
from source code. Specifically, we leverage Deep Belief
Network (DBN) to ically learn ic features

machine learning algorithms. Researchers have manually
designed many features to distinguish defective files from
non-defective files, e.g., Halstead features [10] based on op-
erator and operand counts, McCabe features [31] based on
dependencies, CK features [5] based on function and in-
heritance counts, etc., MOOD features [11] based on poly-
morphism factor, coupling factor, etc., code change features
[18] include number of lines of code added, removed, etc.,
and other object-oriented features [7]. Meanwhile, many
machine learning algorithms have been adopted for soft-
ware defect prediction, including Support Vector Machine
(SVM), Naive Bayes (NB), Decision Tree (DT), Neural Net-
, and Dictionary Learning [20].

Programs have well-defined syntaz, which can be repre-

sented by Abstract Syntax Trees (ASTs) [15] and have been

from token vectors extracted from programs’ Abstract
Syntax Trees (ASTs).

uccessfully used to capture programming patterns [44,46].
In addition, programs have semantics, which is hidden
deenly in sonrce code [85) Tt has heen shown that nr

Deep Learning




Simpler or more complex software analytics?
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My Thesis

Software analytics should be easier.
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Why Easier: Cost & Speed

Dr. Mark Harman@UCL Dr. Tien N. Nguyen@UTDallas Dr. Sung KIm@HKUST Dr. Tim Menzies@NCSU
FSE’13: Wang et alVang1s] ASE’15: Lam et all-am1] FSE’16: Gu et all®u16] FSE’17: Fu et alfu'7
Wait Years of CPU time Wait Weeks of CPU time Wait 10 Days of GPU time Wait 10 minutes of CPU time
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Why Easier: Cost & Speed

Dr. Devanbu@UC Davis

FSE’17: Hellendoorn et
a|[He||endorm1 7

Simpler, faster methods, complex
DL is not always the best.

NC STATE UNIVERSITY

Are Deep Neural Networks the Best Choice
for Modeling Source Code?

Vincent J. Hellendoorn
Computer Science Dept., UC Davis
Davis, CA, USA 95616
vhellendoorn@ucdavis.edu

ABSTRACT

Current statistical language modeling techniques, including deep-
learning based models, have proven to be quite effective for source
code. We argue here that the special properties of source code can
be exploited for further improvements. In this work, we enhance
established language modeling approaches to handle the special
challenges of modeling source code, such as: frequent changes,
larger, changing vocabularies, deeply nested scopes, etc. We present
a fast, nested language modeling toolkit specifically designed for
software, with the ability to add & remove text, and mix & swap out
many models. Specifically, we improve upon prior cache-modeling
work and present a model with a much more expansive, multi-level
notion of locality that we show to be well-suited for modeling
software. We present results on varying corpora in comparison
with traditional N-gram, as well as RNN, and LSTM deep-learning
language models, and release all our source code for public use.
Our evaluations suggest that carefully adapting N-gram models for
source code can yield performance that surpasses even RNN and
LSTM based deep-learning models.

Premkumar Devanbu
Computer Science Dept., UC Davis
Davis, CA, USA 95616
ptdevanbu@ucdavis.edu

Statistical models from NLP, estimated over the large volumes of
code available in GitHub, have led to a wide range of applications
in software engineering. High-performance language models are
widely used to improve performance on NLP-related tasks, such as
translation, speech-recognition, and query completion; similarly,
better language models for source code are known to improve per-
formance in tasks such as code completion [15]. Developing models
that can address (and exploit) the special properties of source code
is central to this enterprise.

Language models for NLP have been developed over decades,
and are highly refined; however, many of the design decisions
baked-into modern NLP language models are finely-wrought to
exploit properties of natural language corpora. These properties
aren’t always relevant to source code, so that adapting NLP models
to the special features of source code can be helpful. We discuss 3
important issues and their modeling implications in detail below.
Unlimited Vocabulary Code and NL can both have an unbounded
vocabulary; however, in NL corpora, the vocabulary usually sat-
urates quickly: when scanning through a large NL corpus, pretty
soon, one rarely encounters new words. New proper nouns (people




Why Easier: Cost

|_ocal hardware:

e AlphaGo: 1920 CPUs and 280 GPUs*,
$3000 electric bill per game

_— .
98: AlphaGo  \ee Sedol

B3

*U* AlphaGo
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My Thesis

Software analytics can be easier. [Fu et al, IST 2016]
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Fu et al. IST journal ’16

Fu, Wei, Tim Menzies, and Xipeng Shen. "Tuning for software analytics: Is it
really necessary?." Information and Software Technology 76 (2016): 135-146.
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Fu et al. IST journal ’16

Tuning is Ignored in SE

DE  Grid Search
~ Manually Tuning

Just Mention Tuning

Never Mention Tuning

Literature Review On Defect Prediction”

N c STATE U N |VE RS |TY * Fu, Wei, Vivek Nair, and Tim Menzies. "Why is Differential Evolution Better than Grid Search for Tuning Defect Predictors?." arXiv preprint arXiv:1609.02613 (2016).
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Tuning Defect Predictors
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Differential Evolution

— Population = Pick N options at random # e.g. N =10

M times repeat : #e.g. M =5

—>

—P o C(Candidate = a + f*(b-c) # ish

NC STATE UNIVERSITY

for Parent in Population:

e Select a, b, ¢ = three other items in population.

e |f Candidate “better”, replace Parent.
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Tuning Defect Predictors
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Time Cost of Tuning Defect Predictors

Datasets Tuned_CART Naive_CART Tuned_RanFst Naive_RanFst

precision F precision E precision F precision F
antV0 5.08 3,52 0.08 0.08 9.78 9.89 0.20 (W}
antV1 6.52 6.18 0.12 0.12 14.13 13:39 0.25 0.25
antV2 9.00 8.79 0.24 0.18 16.75 27.56 0.44 0.36
camelVO0 12.68 17.00 0.24 0.28 28.49 22:52 0.34 0.41
camelV1 1713 31.92 0.27 0.28 33.96 37.00 0.77 0.85
vy 4.26 4.72 0.07 0.08 8.89 10.39 0.19 021
jeditvo 8.69 7.9 0.11 0.10 18.40 14.32 0.32 0.37
jeditV1 9.05 8.13 0.12 0.10 17.93 17.42 0.36 0.34
jeditvV2 7.90 10.34 0.14 0.15 27.34 20.20 0.38 0.40
log4j 2.60 2.92 0.06 0.08 9.69 7.67 0.15 0.17
lucene 6.07 6.89 0.10 0.12 9.9% 13.06 0.25 0.35
poiVO0 7.42 7.80 0.09 0.10 25.86 19.29 0.28 0.32
poiV1 9.31 7.62 0.13 0.14 12.67 27.23 0.29 0.36
synapse 3.88 4.87 0.07 0.08 8.13 13.29 0.19 0.17
velocity 4.27 5.51 0.07 0.10 15.18 11.58 0.21 0.27
xercesV0 * 7.47 ANEA 0.11 g 1731 . 0.28
xercesV1 11.07 0.19 25.27 0.46

X62 x45
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My Thesis

But it can be very hard to show it can be easier. [Fu et al, FSE 2017 A
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Fu et al. Deep Learning, FSE’17

Our Objective
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Our Objective
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Fu et al. Deep Learning, FSE’17

Wei Fu, and Tim Menzies. "Easy over hard: a case study on deep learning."
In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pp. 49-60. ACM, 2017.
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Fu et al. Deep Learning, FSE’17

Deep Learning in SE

e From 2015102017, 11 DL paper in SE
e 4 Papers mentioned training cost

e None compares DL costs with competitor methods

NC STATE UNIVERSITY 25




Fu et al. Deep Learning, FSE’17

How Hard Can It Be ?

e Baseline methods are not well described
e No Data, No DL Code

e Did not report DL costs

NC STATE UNIVERSITY 26
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What | Got

Predicting Semantically Linkable Knowledge in Developer
Online Forums via Convolutional Neural Network

Bowen Xu' -, Deheng Ye? *, Zhenchang Xing?, Xin Xia' !, Guibin Chen?, Shanping Li’
' College of Computer Science and Technology, Zhejiang University, China
?School of Computer Science and Engineering, Nanyang Technological University, Singapore
max_xbw@zju.edu.cn, ye0014ng@e.ntu.edu.sg, zcxing@ntu.edu.sg,

xxia@zju.edu.cn, gbchen

ABSTRACT

Consider a question and its answers in Stack Overflow as a
knowledge unit. Knowledge units often contain semantically
relevant knowledge, and thus linkable for different purposes,
such as duplicate questions, directly linkable for problem
solving, indirectly linkable for related information. Recog-
nising different classes of linkable knowledge would support
more targeted information needs when users search or ex-
plore the knowledge base. Existing methods focus on bi-
nary relatedness (i.e., related or not), and are not robust
to recognize different classes of semantic relatedness when
linkable knowledge units share few words in common (i.c.,
have lexical gap). In this paper, we formulate the prob-
lem of predicting semantically linkable knowledge units as
2 multiclass classification problem, and solve the problem
ng deep learning techniques. To overcome the lexical gap
issue, we adopt neural language model (word embeddings)
and convolutional neural network (CNN) to capture word-
and d level semantics of k ledge units. Instead of
using human-engineered classifier features which are hard to
design for informal user-generated content, we exploit large
amounts of different types of user-created knowledge-unit
links to train the CNN to learn the most informative word-
level and document-level features for the multiclass classi-
fication task. Our evaluation shows that our deep-learning
based ignifi ly and i ly outperforms
traditional methods using traditional word representations
and human-engineered classifier features.

ntu.edu.sg, shan@zju.edu.cn

Keywords

Link prediction, Semantic relatedness, Multiclass classifica-
tion, Deep learning, Mining software repositories

1. INTRODUCTION

In Stack Overflow, programming k has
been shared through millions of questions and answers. We
consider a Stack Overflow question with its entire set of
answers as a k ledge unit ling some progr: ing-
specific issues. The knowledge contained in one unit is likely
to be related to knowledge in other units. When asking a
question or providing an answer in Stack Overflow, users
reference existing questions and answers that contain rele-
vant knowledge by URL sharing [46], which is strongly en-
couraged by Stack Overflow [2]. Through URL sharing, a
network of linkable knowledge units has been formed over
time [46].

Unlike linked pages on Wikipedia that follows the under-
lying knowledge structure, questions and answers are spe-
cific to individual’s programming issues, and URL sharing
in Q&As is opportunistic, because it is based on the com-
munity awareness of the presence of relevant questions and
answers. A recent study by Ye et al. [46] shows that the
structure of the knowledge network that URL sharing activ-
ities create is scale free. A scale free network follows a power
law degree distribution, which can be explained using pref-
erential attachment theory 4], i.e., “the rich get richer”. On

N
=| stackoverflow

Given two questions from stack
overflow, are they duplicate, direct

link, indirect link or isolated"’

ASE’16

NC STATE UNIVERSITY




Fu et al. Deep Learning, FSE’17

Comparison

4 h

ASE’16(Xu et al.) FSE’17(Fu et al.)
Baseline: SVM Baseline: CNN
Proposed: CNN Proposed: SVM+DE

. /

NC STATE UNIVERSITY 28
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What | Did Over One Month

e (Collect data from Stack Overflow (60 GB)
e Pre-process data

e Follow Xu et al, replicate their experiment

NC STATE UNIVERSITY A
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XU et al. Baseline Method
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Successfully Reproduce Xu’s Baseline

0.4
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Xu et al’s Complex Method: CNN

o mm o mm mm Em Em o Em Em Em Em Em Em Em Em Em Em Em o e e e
P oS
I \
1 Input Layer Output Layer I
. |
1 Word Vector | || \ ||| Feature Vector
1 \ ,’// U/ \ Relatedness(kuy, kuy) 1
N ¢ fvy - fvy 1
‘ I )\ S / R " ' '
! e ——e— o0 iN
~ 1 Word Vector |/ o o o/l Feature Vector / 1
| of ku, of fv, I
| I
|
| .
\ Convolutional Neural Networks !
Data . X Model
~

Training process
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Typical CNN Architectures

AlexNet-8

VGG-16

Resnet-34

Resnet-152 b b b 06 A b O R R R )

NC STATE UNIVERSITY * http://sqlml.azurewebsites.net/2017/09/12/convolutional-neural-network/
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Xu et al’s CNN Architecture

Hidden Layer
Input Layer CoNvV RELU POOL Output Layer

CONYV: a dot product

Feature Vector
of fv, \

Word Vector
of kuy

RELU: max(0,x)

\ Relatedness(kuy, kuy)
fvy - fvy

/4 REAIGA

POOL: downsampling

\| Feature Vector /

Word Vector Z AN
of fvy

of kuy

7
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Simple Method: Tuning SVM With DE

Model

)
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—
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o T mm e =

Training process
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More Detalls

Parameter Tuning

100,000 KU texts

Parameters

Word2Vec

L R e T T T T T T T B S e e e e -———

_______________________________________________________________ ——

Look 1 Tuning
. . . . . l
Training KU pairs New Training KU vectors | KU vectors

e

LU Best Tunings

Embeddings

_________________________________________________________

Testing KU
vectors

Predict Results

NC STATE UNIVERSITY
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Easy Over Hard:
Simplicity = Better results

0.4 T T I I I
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Easy Over Hard: Less Runtime

1000
o
E 100
-
@ 10
E I
S
DE+SVM
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My Thesis

And, sometimes, it can be too easy. [Fu et al, FSE 2017 B
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Fu et al. Defect Prediction, FSE’17

Wei Fu, and Tim Menzies. "Revisiting unsupervised learning for defect
prediction." In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, pp. 72-83. ACM, 2017.
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Effort-Aware Just-in-Time Defect Prediction: Simple
Unsupervised Models Could Be Better Than Supervised
Models

Yibiao Yang', Yuming Zhou' ", Jinping Liu', Yangyang Zhao', Hongmin Lu’, Lei Xu',
Baowen Xu', and Hareton Leung®
' Department of Computer Science and Technology, Nanjing University, China
’Depanment of Computing, Hong Kong Polytechnic University, Hong Kong, China

consecutive commits in a given period of time) that introduce
ABSTRACT i its in a gi iod of time) that introd:

Unsupervised models do not require the defect data to build onoox S?"“"’" defects into the source code in a software
the prediction models and hence incur a low building cost system [37]. Compared with traditional defect p‘:‘fdlcuon
and gain a wide application range. Consequently, it would ax n!od'ulc.(c.g. package, ﬁle, or class) [cv?l, JIT defect
be more desirable for practitioners to apply unsupervised prediction is a fine lgmnu]amy defect prediction. As stated
models in effort-aware just-in-time (JIT) defect prediction by Kamei et al. 13}, it allows developers to inspect an order
if they can predict defect-inducing changes well. However, of magnitude smaller number of SLOC (source lines of code)
little is currently known on their prediction effectiveness in to find latent d_c_fccts. This could prov vide large By Ogs A
this context. We aim to investigate the predictive power effort over traditional coarser granularity defect predictions.
of simple unsupervised models in effort-aware JIT defect In pmjtm\.ﬂar,: J“, figfect prediction can b.e perfortnad at
prediction, especially compared with the state-of-the-art su- check-in time [13]. This allows developers to inspect the code
pervised m.odcls ta i racasd Miaratin: Wa ﬁrs.z i Vel et changes for finding the latent defects when the change details
commonly used change metrics to build simple unsupervised aro;atill freah in thatf minds; ‘:\s a rasult, it I posslblc_lo
models, Then, we compare these unsupervised models with find the latent defects faster. Furthermore, compared with
the state-of-the-art supervised models under cross-validation, "0,"_"0““"“""1 nop-qﬁur Saware defect prediction, effort- e
time-wise-cross-validation, and across-project prediction set- JIT defect prediction takes into account !.hc effort required
tings to determine whether they are of practical value. The to inspect the ’,“f’d’ﬁm code for a change [13]. Consequently,
experimental results, from open-source software systems, ({:ﬁorbaw{m_c JIT dcfcc_l prediction would brc more practical
show that many simple unsupervised models perform better for practitioners, as it enables them to find more latent

than the state-of-the-art supervised models in effort-aware delths per unit code inspection effort. ?urremlyl, there is
JIT defect prediction. a significant strand of interest in developing effective effort-

aware JIT defect prediction models [7, 13].

FSE’16

NC STATE UNIVERSITY
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A Typical Software Analytics Framework
ga,berw‘cea/
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Yang et al: Unsupervised Framework

o Em o o e e e e e

. \‘\
I
! recall 20% effort !
— 1 Ll
-—m !
|
-— AUC : u
I bad other :
: -
. I
Testing Data *, LOC . Results

— e e e D e e M e e e e e e = -

Testing Process

N c STATE U N |VERS |TY [Koru 2010]Koru, Gunes, et al. "Testing the theory of relative defect proneness for closed-source software." Empirical Software

Engineering 15.6 (2010): 577-598.
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More Details Over Here

Build 12 unsupervised models, on testing data:

NF| NS | LT | FIX| ND | NDEV | EXP | REXP | SEXP | NUC | AGE | Entropy | LOC | Label
03 11| 1] 1] 23 | 2| 12 | & 2 | 8 03 | 32| ?
(o) .
_>1 Qo etiortay 52 o (57 2 (3 13 3 1 6 o4 @3 Predicted as
918 |03 5 5 3 ) 3 | 4 0.6 18 | ? “Defective”
20% effort 13|30 3] 6 7 | 9 3 5 | 3 02 |103| ?
005370 2| 8 2 | 22 | 9 7 12| 03 |20 ] ?
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Our comments

e Reported averaged results across all projects

e How to apply 12 unsupervised learners in practice

NC STATE UNIVERSITY 45
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A Typical Software Analytics Framework
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OneWay

NC STATE UNIVERSITY 47




Fu et al. Defect Prediction, FSE’17

OneWay is not “the Way”

OneWay:

“The alternative way, maybe not the best way!”

--Wei

NC STATE UNIVERSITY 48
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OneWay Framework

X1 | X2 | NS | .. | Xn | Label
1123 1 |..]33 ?
2 |11 2 | .. |22 ?
26| 5 |..]18 ?
10,9 10 |..|7 ?
ST ™ 0l0|az .|k
, . AN
: 1
1
a» : P S
-— |
! 1
: 1
I
1 12 learners Select best !
Data N X Model

Training process

NC STATE UNIVERSITY
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Performance Measure

100 - I
o Recall :
80 A
70 A \
e PO pt o 60
$ 50- APopt
a)
BN _
40 I
1 |
¢ F1 =iy
20 - I m Optimal Learner
I === Proposed Learner
10 1 o Random Learner
g !206 Eniart == \NoOrst Learner
® P re C I S I O n (I) 1IO 2IO 310 4IO 5IO 6'0 7I0 8IO 9I0 1 (I)O
% LOC
S(optimal) — S(m)
Popt(m) =1 - —
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Our Result Format

Recall

Supervised Unsupervised
- e R T
Bugzilla S| Bememen-r o T B eseary
Platform S| S=amtoo - o = e il i 1o B8 Blue: Better
o] e oo e e« s s il 55 Sl Black: Similar
JDT =1 = : T s :
S $_;_—1:_T__E ______ _?___ _‘___':_T__'_ - -
St il L S — | Red: Worse
Columba ol ' I = 2 k)
S| Pt BEERS SSaoSE
PostgreSQL Bl e e TQ_-ﬁa* ol
9 — %@%? gl o | s | e el == =S
= ev_\g‘ <o >|>.‘b R L O X \‘OQ\‘ g Q\‘*‘ o‘?, P‘C’(” e*‘?@e-f.? 6+? $\)CJ

Recall
Report results on a project-by-project basis.
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Research Questions

e All unsupervised predictors better than supervised?
e |s it beneficial to use supervised data?

e OneWay better than standard supervised predictors?
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Research Questions

e All unsupervised predictors better than supervised?
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tors Better ?
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tors Better ?
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Research Questions

e |s it beneficial to use supervised data?
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d Data”?
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Research Questions

e OneWay better than standard supervised predictors?
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RQ3: OneWay Better than Standard Supervised Predictors?

Recall Popt = Precision
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F1 Precision
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My Thesis

Software analytics should be easier.
Software analytics can be easier. [Fu et al, IST 2016]
But it can be very hard to show it can be easier. [Fu et al, FSE 2017 A

And, sometimes, it can be too easy. [Fu et al, FSE 2017 B

61
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When to be simpler?
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Fu et al. e-Dominance, submitted to FSE’18

Wei Fu, Tim Menzies, Di Chen, and Amritanshu Agrawal. "Building Better
Quality Predictors Using ‘€-Dominance’." Submitted to FSE’ 2018.
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Fu et al. e-Dominance, submitted to FSE’'18

“Many Roads Lead to Rome”

Similar learners:
e |essman et alllessman’08]: 17/22 defect predictors are indistinguishable.

e (ohtra et al[Gohtra’15]: 32 defect predictors can be clustered into 4 groups.

If learners have a “result space”(recall vs false alarm):
e \What “shape” of results spaces leads to “many roads””?

e (Can we reverse engineer from that space a much simpler defect predictor?
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Fu et al. e-Dominance, submitted to FSE’18
Deb’s principle of e-Dominance

If there exists some € value below which it is useless or impossible to
distinguish results, then It is superfluous to explore anything less than ¢

1
A

Recall

False Alarm

N c STATE U N IVE RS ITY Deb, Kalyanmoy, Manikanth Mohan, and Shikhar Mishra. "Evaluating the e-domination based multi-objective evolutionary algorithm for a quick computation of

Pareto-optimal solutions." Evolutionary computation 13.4 (2005): 501-525.
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DART: Fast-and-Frugal Tree(FFT)

1. if cob <=4 then false
2. else if rfc > 32 then true
§ 3. else if dam > 0 then true
Q 4. else if amc < 32.25 then true
o
5. else false
0 > 1 We used d=4, 2Ad=16 trees to

explore the results space.
False Alarm
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Fu et al. e-Dominance, submitted to FSE’'18

RQ1: DARTS Better than Established Learners?

Goal | Data DART SL NB EM SMO Goal | Data DART SL NB EM  SMO
log4j 23 53 51 56 48 ivy 28 17 9 28 23
E jedit 31 40 41 34 47 0 jedit 39 10 9 16 17
E lucene 33 40 44 44 71 :g synapse 43 26 24 22 22

2 poi 35 36 57 70 45 f camel 53 15 17 16 50

72} ~
é ivy 35 50 40 71 43 § log4j 56 19 22 16 23

g velocity 37 61 40 49 60 = velocity 64 64 64 24 60

s &

S synapse 38 51 39 34 62 o» poi 78 51 19 33 64
_"§, xalan 39 55 55 70 68 lucene 81 43 27 20 80
hc camel 41 60 52 44 71 xerces 90 4 9 15 48

Xerces 42 68 60 50 69 xalan 99 11 15 100 51

* Ghotra, Baljinder, Shane Mclintosh, and Ahmed E. Hassan. "Revisiting the impact of classification techniques on the performance of defect prediction models."

N C STATE U N |VERS |TY Proceedings of the 37th International Conference on Software Engineering-Volume 1. IEEE Press, 2015. 67



Fu et al. e-Dominance, submitted to FSE’'18

RQ2: DARTS Better than Goal-Savvy Learners?

dis2heaven Pop:
Data (less is better) (more is better)
DART Tuning RF | DART Tuning RF
ivy 35 56 28 28
jedit 31 35 39 39
synapse 38 8l 43 48
camel 41 70 53 54
log4j 23 51 56 20
velocity 37 53 64 64
poi 34.8 27 73 74
lucene 33 35 81 80
Xerces 42 70 90 94
xalan 38.7 36 99 99

NC STATE UNIVERSITY Fu, Wei, Tim Menzies, and Xipeng Shen. "Tuning for software analytics: Is it really necessary?." Information and 68

Software Technology 76 (2016): 135-146.
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RQ3: DARTS Better than Data-Savvy Learners?

Goal Data | DART KNN SMO NB RF SL DT
log4j 23 45 44 50 44 40 47

’E jedit 31 45 52 41 39 44 40
S lucene 33 37 45 44 41 40 40
g poi 35 38 52 52 39 46 43
K] vy | 35 37 46 36 39 37 40
g velocity 37 56 64 40 44 61 42
§ synapse 38 36 47 36 42 37 42
g xalan 39 20 35 45 25 71 28
= camel | 41 45 62 47 35 53 38
xerces 42 45 67 52 52 53 53

ivy 28 26 27 10 27 24 26

jedit 39 3 17 6 10 4 24

0 synapse 43 39 38 27 36 36 35
§ camel 52.9 53 53 21 52 53 49
g log4j 56 27 50 24 33 44 44
§ velocity 64 56 64 64 57 65 53
2 poi 73 67 69 26 72 72 71
D? lucene 81 45 49 27 49 42 53
xXerces 90 73 63 20 50 77 48

xalan 99 99 98 24 93 100 88

NC STATE UNIVERSITY *Agrawal, Amritanshu, and Tim Menzies. "" Better Data" is Better than" Better Data Miners" (Benefits of Tuning 69

SMOTE for Defect Prediction)." arXiv preprint arXiv:1705.03697 (2017).
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Conclusion

Current Ways to Build State-of-the-art Predictive Models

Hyper-Parameter
Tuning

-TTTTTTTA

Data Preprocessing: v

* SMOTE
* SMOTUNED

\ 4

Train Learner

Data oot Model

Build a Simple Scout(e.g., DART) to
Explore the Results Space

Our Approach
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Fu et al. e-Dominance, submitted to FSE’'18

Future of Future Work

e Apply e-Dominance to other software analytics tasks.
o Text Mining
o Issue closing time prediction

e Determine € threshold

e Other criteria to simplify software analytics.
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From Last Exam

Why study simplicity? cost, speed
When this won’t work? e-Dominance

What’s the difference between SE/general data mining? under-exploited simplicities

1 Zipf's law 1000000 Token frequency
i, top to bottom:
i WO Tomeat, Jetty,
o b e ? 10000 - ::___ jHotdraw jUnit
] )
5. g 1000 4 .
F £ 4pp 4
% 6 . o
g | Token frequencies, S 5
./ human languageS |
N 1 ; g T
: = 1 10 100 1000 10000 100000
% 2 4 6 8 10 12 14 LOG(Rank)
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Thank Youl
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