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To enable software practitioners to perform data exploration 
and analysis in order to obtain insightful and actionable 

information for data-driven tasks around software.
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TUNING (with DE)!
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● Is tuning with DE helpful?

● Is tuning with DE a faster method?

● How to improve tuning  with DE?
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● Is tuning with DE helpful?
○ Tuning for defect predictors (IST’16)
○ Tuning for topic modeling (IST, minor revision)

● Is tuning with DE a faster method?
○ DE v.s. grid search (under review)
○ DE+SVM v.s. deep learning (FSE’17)

● How to improve tuning  with DE?
○ Future work...

Heterogeneous 
Defect Prediction
      (TSE’17)

JIT Effort-aware
Defect Prediction
     (FSE’17)
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Tuning for every task

Tuning should 
be faster

Simple method first

Knowledge 
reuse
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• Arcuri et al[Arcuri2011] reported their tuning 
require weeks, or more, of CPU time.

• Wang et al[wang2013] require weeks to 
years to learn control settings.

• Deep learning: 
– Lam et al.[Lam2015]: weeks of CPU.
– Gu et al.[Gu2016]: 240 hours of 

GPU.
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● CPU

● Cost (cloud service)

● Reproducibility

Why Faster Software Analytics?



AWS cost:  Computing + Bandwidth        

                   + Storage +...
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Why Faster Software Analytics?

● CPU

● Cost (cloud service)

● Reproducibility



Wang et al[Wang 2013]15 years of CPU time to do 

code clone detection

Why Faster Software Analytics?

20

● CPU

● Cost (cloud service)

● Reproducibility
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TUNING (with DE)!



Tuning is Ignored in SE!

22* Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." Journal of Machine
 Learning Research 13.Feb (2012): 281-305.
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Just Mention Tuning

Manually Tuning
Grid Search*DE

Never Mention Tuning

out of 52 highly cited 
defect prediction papers

* Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." Journal of Machine
 Learning Research 13.Feb (2012): 281-305.



Why Tuning Ignored?
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CPU intensive!Cause they are so well explored all 
already… right?
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● Is tuning with DE helpful?
○ Tuning for defect predictors (IST’16)
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● Is tuning with DE a faster method?
○ DE v.s. grid search (under review)
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● How to improve tuning  with DE?
○ Future work...



This talk
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FSE’17

DE + SVM Deep learning



Deep Learning in SE
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Deep Learning in SE
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Deep Learning in SE
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Trade-off: Benefit vs. Cost ?
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Method



Case Study

Linkable Questions Prediction on 
StackOverflow
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Duplicate

Direct 
Link

Indirect 
Link

Isolated

ASE’16
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Duplicate

Direct 
Link

Indirect 
Link

Isolated

  Predictor
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Duplicate

Direct 
Link

Indirect 
Link

Isolated

Question A

Question B
  Predictor



Learners 

• Baseline:
– SVM

• Xu’s deep learning method:
– CNN (convolutional neural networks)

• Our proposed method:
– SVM + DE
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Parameters in SVM (scikit-learn):
 C,  kernel,  gamma,  coef0



Tuning Algorithm: Differential Evolution*
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Population = Pick N options at random # e.g. N =10

M times repeat : # e.g. M = 5

for Parent in Population:

●  Select a, b, c = three other items in population.
●  Candidate = a + f*(b-c) # ish
●  if Candidate “better”, replace Parent.

* Storn, Rainer, and Kenneth Price. "Differential evolution–a simple and efficient heuristic for global optimization 
over continuous spaces." Journal of global optimization 11.4 (1997): 341-359.



Experimental Setup
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Experimental Setup
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Results



Research Questions
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RQ1: Can we reproduce Xu’s baseline results?

RQ2: DE+SVM outperforms Xu’s deep learning method?

RQ3: DE+SVM faster than Xu’s deep learning method?
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RQ1: Reproduce Xu’s Baseline Results?

Comparison of our baseline method with Xu’s baseline. 
Best scores are marked in bold.
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RQ1: Reproduce Xu’s Baseline Results?

Comparison of our baseline method with Xu’s baseline. 
Best scores are marked in bold.

 Score Delta(F1) = Our SVM - Xu’s SVM = -0.06
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RQ1: Reproduce Xu’s Baseline Results?



RQ1: Reproduce Xu’s Baseline Results?
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Overall, we got similar results to the baseline method reported in Xu’s study



Research Questions

RQ1: Can we reproduce Xu’s baseline results?

RQ2: DE+SVM outperforms Xu’s deep learning method?

RQ3: DE+SVM faster than Xu’s deep learning method?
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RQ2: DE+SVM Outperforms Xu’s CNN?
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RQ2: DE+SVM Outperforms Xu’s CNN?
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Deep learning(CNN)  does not have any performance advantage over DE+SVM.



Research Questions
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RQ1: Can we reproduce Xu’s baseline results?

RQ2: DE+SVM outperforms Xu’s deep learning method?

RQ3: DE+SVM faster than Xu’s deep learning method?



RQ3: Faster than Xu’s CNN?
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DE+SVM is 84X faster than deep learning (CNN) in terms of model building.
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Conclusion



Observation

 Simple DE tuning performs 
                           Better & Faster than deep learning!
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For this case study:



Another FSE’17 Paper on Deep Learning
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Implication

For future deep learning in SE:

• TUNE your baseline methods.

• Do not ignore the COST of deep learning.
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● Is tuning with DE helpful?
○ Tuning for defect predictors (IST’16)
○ Tuning for topic modeling (IST, minor revision)

● Is tuning with DE a faster method?
○ DE v.s. grid search (under review)
○ DE+SVM v.s. deep learning (FSE’17)

● How to improve tuning  with DE?
○ Future work...



10 minutes tuning is NOT TRUE 
           for all  SE tasks!
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That depends on:

• Learners (SVM, random forests, deep learning,...)

• Software analytic tasks (data, goal,….)

• Searching algorithms (DE, GA,....)
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Given a limited budget, can we 
improve performance of tuning?

Challenge



Recap on Tuning with DE

60

Objective
(e.g, F1)

Better

Tunings sorted
Objective space, points represent scores of tunings (parameters), 
e.g. F1 score of (C=1.2, gamma=0.5, coff=1)= 0.3

0

1

Randomly Initialize N 
points as parents (N=5)

Position 0

(C=2.2, gamma=0.3, coff=2)

(C=1.8, gamma=0.9, 
coff=0.2)
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Recap on Tuning with DE
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Objective
(e.g, F1)

Better

Tunings sorted
Objective space, points represent scores of tunings (parameters).

0

1

Tuning stopped
given a limited budget

Position 1



Recap on Tuning with DE
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Objective
(e.g, F1)

Better

Tunings sorted
Objective space, points represent scores of tunings (parameters).

0

1

Push these points 
further to the optimal direction?

Position 1

Tuning stopped
given a limited budget



Recap on Tuning with DE
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Objective
(e.g, F1)

Better

Tunings sorted
Objective space, points represent scores of tunings (parameters).

0

1

Can we push them here?

Position 2

Tuning stopped
given a limited budget



Tuning with DE: Better Initialization?
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Objective
(e.g, F1)

Better

Tunings sorted
Objective space, points represent scores of tunings (parameters).

0

1

Initialize these points as parents?
Tuning start here?

Position 1



Tuning with DE: Get Better Results?
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Objective
(e.g, F1)

Better

Tunings sorted
Objective space, points represent scores of tunings (parameters).

0

1

We expect tuning to stop here

Position 2

Tuning stopped
given a limited budget



Tuning with DE: Get Even Better?
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Objective
(e.g, F1)

Better

Tunings sorted
Objective space, points represent scores of tunings (parameters).

0

1

Even better?!

Position 3

Tuning stopped
given a limited budget



We Need a Better Initialization!
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Objective
(e.g, F1)

Better

Tunings sorted
Objective space, points represent scores of tunings (parameters).

0

1

Randomly Initialize N 
points as parents (N=5)

Position 0 Position 1

Improved



We Got Some Experience... 
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TSE 2017



Other Researchers Reported...
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SEAMS 2017

ICPE 2017



Our Proposed Idea
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Transfer Learning

Parameter Tuning

Transfer Tuning



Another Illustration
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Differential Evolution:

Population = Pick N options at random # e.g. N =10

M times repeat : # e.g. M = 5

for Parent in Frontier:

●  Select a, b, c = three other frontier items.
●  Candidate = a + f*(b-c) # ish
●  if Candidate “better”, replace Parent.



Another Illustration
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Present:

Population = Pick N options at random # e.g. N =10

Population = Pick N options at random # e.g. N =10

Population = Pick N options at random # e.g. N =10

Population = Pick N options at random # e.g. N =10

project1

project2

project3

projectN

.  

.

.



Another Illustration
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Future:

Population = Pick N options # e.g. N =10

Population = Pick N options at random # e.g. N =10

Population = Pick N options # e.g. N =10

Population = Pick N options # e.g. N =10

project1

project2

project3

projectN

.  

.

.

Transfer 
Knowledge



Preliminary Results - Defect Prediction
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Learner: CART,  Performance metric: Precision

CamelV1

● No transfer ==> 0.398
● Transfer from jeditV2 ==> 0.8
● Transfer from log4j ==> 0.8
● Transfer from poiV1 ==> 0.8

CamelV0

● No transfer ==> 0.521
● Transfer from log4j ==> 0.667
● Transfer from luence ==> 0.667



Preliminary Results - Defect Prediction
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Learner: CART,  Performance metric: F1

PoiV0

● No Transfer ==> 0.728
● Transfer from antV2 ==> 0.804
● Transfer from synapse ==> 0.819

XercesV1

● No Transfer ==> 0.399
● Transfer from poiV1 ==> 0.56
● Transfer from synapse ==> 0.488



Challenges

• Better transfer learning strategy for transfer tuning.

• Understand why and when transfer learning works for tuning.

• How to generalize to other software analytics?
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My progress so far....
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Transfer 
Learning

Parameter 
Tuning

Apr,16  Tuning (IST 2016)

Dec,16 DE better? (Under Review)

Jan,17 DE + LDA1 (IST Minor Revision)

Jun,17 Easy over Hard(FSE’17)
HDP2(TSE 17) June,17

1. This is a joint work with Amrit Agrawal
2. This is a joint work with Dr. JC Nam from Waterloo University.

Failed Experiments



               DE + LDA1

(IST Minor Revision)

Plan of work
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Transfer 
Learning

Apr,16

   Tuning 
(IST 2016)

Dec,16

   DE better?
(Under Review)

Parameter 
Tuning

Sep,17

Easy over Hard
  (FSE 2017)

Jan,17

1. This is a joint work with Amrit Agrawal
2. This is a joint work with Dr. JC Nam from Waterloo University.

Transfer tuning (Dec 2017?)

June,17

    HDP2

(TSE 2017)

Failed Experiments
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● Is tuning with DE helpful?
○ Tuning for defect predictors (IST’16)
○ Tuning for topic modeling (IST, minor 

revision)

● Is tuning with DE a faster method?
○ DE v.s. grid search (under review)
○ DE+SVM v.s. deep learning (FSE’17)

● How to improve tuning  with DE?
○ Future work...

Heterogeneous 
Defect Prediction
     (TSE’17)

JIT Effort-aware
Defect Prediction
     (FSE’17)
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