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NC STATE UNIVERSITY

Roadmap

. EXxpectation management
. Motivation

. Background

. Progress Report

. Future Work & Challenges



NC STATE UNIVERSITY

What is Parameter Tuning?

e Data mining algorithms usually have some
“magic parameters” to control their behavior to
explore data.

Random|Forests

o Random Forests: — 3
Training Q
m  Number of trees Data @

m  Depth of the tree

e When tuning a data miner, data miner will use
different heuristics and generate different
models.
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e Data mining algorithms usually have some
“magic parameters” to control their behavior to
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Random|Forests
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different heuristics and generate different
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Note: outside of SE data science,
other communities endorse tuning

e Other communities ==l - EE -
— ‘::\_ S A by -1 z
o Test error improved from 11% to 9.5% on Eg?? =
image classification [Snoek’ 2012] ﬁ —

alseals el LR o
) E;;e(jr?gfaeri;igr:ve\]/:ilrﬁntoaf;r;:a?lof?:ction of Eggﬁgﬁ
the computation time [Bergstra '2012] ' e s
SEERRS dEE

o Analytic parameter selection yields good ‘ ™R e
generalization performance of SVM ggﬁg gn
[Cherkassky '2004] Jﬂ:ﬂgi

CIFAR-10 *

* https://lwww.cs.toronto.edu/~kriz/cifar.html
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But for “software defect prediction”....
... mostly ignored

Web Images More...

e “Software defect prediction”
o Guessing where the bugs are, using models
built via data mining
Articles Data mining static code attributes to learn defect predictors . .
T Menzies, J Greenwald, A Frank - Software Engineering, IEEE ..., 2007 - ieeexplore.ieee.org (@) (See Slldezo for more detalls)

GO gle *data mining" "software engineering" "defect prediction” - “

Scholar

Case law ... sample used to learn a predictor) can make different attributes appear most useful for defect
prediction. ... and the PROMISE code repository are places to store and discuss software engineering
My library data sets ... Data mining is a large and active field and any single study can only use a ...
Cited by 632 Related articles  All 14 versions Cite Save
Any time Cross-project defect prediction: a large scale experiment on data vs. domain vs. process 1 1
Stoa 2015 T Zimmermann, N Nagappan, H Gall, E Giger... - ... software engineering ..., 2009 - dl.acm.org [ J ece n | reV| eW
i oot ... So far, only a few have studies focused on transferring prediction models from one project to
another. In this paper, we study cross-project defect prediction models on a large scale. ... D.2.9 - -
: Nansgere: ety sssrancs (SOA)Gonera Torms. .. o  Only 2/50 acknowledged impact of tunings
Custom range... Cited by 207 Related articles All 11 versions Cite Save "
< et “ 3 S 3 . H 13 H
Problems with precision: A response to “comments on ‘data mining static code attributes to AI t I I I ﬁ th h If’
Sotbyrelevance leam defect predictors™ o MOost all using learners o e-sne
Sort by date T Menzies, ADekhtyar... - ... ing, 2007 - digitalcommons.calpoly.edu

... Index Terms—Defect prediction, accuracy measures, static code attributes, empirical ... that the low
precision detectors seen in Menzies et al's paper “Data Mining Static Code ... no such

include patents ha ization has b i orted (at least, not in the softwa ineering literature ... T t .
rclisle distions Gled by 107 Raleisd ariien Al1fvarsions Clla Sarm o WO exceptions.
Software defect association mining and defect correction effort prediction H H
S Crostosion O Sond. M Shepperd. M Garrig. - Sora inG. . 2008 . isaexpore sos o o  [Tantithamthavorn 2016](Grid Search)

... Current defect prediction work focuses on estimating the number of defects remaining in software h

systems ... IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ... together with their inherent 43 H PC d th 24 h rth d
understandabiliy make association rule mining a popular data mining method. - | noaes wi yperinreaas
Cited by 145 Related articles All 24 versions Cite Save

[o) . H
Benchmarking classification models for software defect prediction: A proposed framework and ] 65% learners: 30 minutes

novel findings

S Lessmann, B Baesens, C Mues... - i , ... 2008 - ieeexplore.ieee.org u 35Cyo |earners: over 30 minutes

... Index Terms-—Complexity measures, data mining. formal methods, statistical methods, software

defect prediction. C ... for organizing comparative classification ex- periments in software defect .
prediction and conduct a ... IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ... O [Lessmann 2008](G r|d Sea rCh)

Cited by 406 Related articles All 13 versions Cite Save

On the relation of refactorings and software defect prediction [ ] tune a Sma” Set Of thelr |ea rners

J Ratzinger, T Sigmund, HC Gall - P of the 2008 international ..., 2008 - dl.acm.org
.. A critique of software defect prediction models. ... In ings of the \al Symp: .
on i ing and (ESEM), 2007. [9] F. Van | | Nno ru nt" ne repOFtS
Rysselberghe. .. Data Mining: Practical machine learning tools and techniques. ...

Cited by 69 Related articles All 8 versions Cite Save

10



Why ignhored?

DEFAULT

NEXT EXIT N

Cause they are so well
explored all already... right?

CPU intensive!

11
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Why ignored?

e Arcuri et al reported their tuning may require
weeks, or more, of CPU time[Arcuri’ 2011].

e Wang et al. needed 15 years of CPU to
explore 9.3 million candidate configurations for
software clone detectors[Wang' 2013].

CPU intensive!

12
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Open issues
(for SE data science)

Does tuning improve learners’ performance?
Does tuning change learners’ rank? v
Is tuning very slow?

Should data miner be used “off-the-shelf”?

Q‘

\
)
Xy

We’'ll get back to these... much later in the talk
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How to Tune?

« Mathematical Optimization
« Grid Search
« Evolutionary Algorithms

16
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Mathematical Optimization

min  fo(X) < Objective

st.  fiX)<bpi=1,..,m. - i
fl( )— l < Constraint functions

e Based on the property of objective function and constraint function:
o linear programing
o non-linear programing
@)

e [f differentiable, methods, like gradient descent, are to solve such problem
o Linear regression and logistic regression
o SVM, regularization parameter C[Cherkassky’2004]

e Note used much in SE because software not simple differential functions:

o Also, issue of computational complexity of SE problems[Harman 2001]
17
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Grid Search

e Divide all C configuration options into N values | Gr,.'..‘.'...§..‘...‘.‘_rc"

e FEvaluate N*C different combinations

o Slow e -

o Miss important optimization ,

WUEKA 9 parameter into 7 values
b O learn 719= 40 million evaluations!

18
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Evolutionary Algorithms
E.g. GA:

1. Population <= initializePopulation(N)

2. evaluatePopulation(Population) E.g.: MOEA/D, NSGA-IIl, DE
3. Whil t stopConditi
lle not stopCondition() _ Other approaches:
a. Parents += selectParents(Population) particle swarm, ant-colony, bee colony, etc.
b. Offspring += crossOverMutate(Parents)
c. evaluateFitness(offspring) Future work!

d. Replace least-fit population with new offspring
4. Return (Population)

19
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Differential Evolution

1. Population «+= InitializePopulation(N)

2. evaluatePopulation(Population)

3. While not StopCondition() e Pick three (X, Y, Z) from the population
a. For parent in Population e Foriinlen(parent)
e New[i] = X[i]+ f * (Y[i]-Z[i]) (e.g., f=0.75)

I. |Offspring +«= CrossOverMutate(parent) e Ifrandom < CR:(CR=0.3)

. . ) o  parent[i] = Newl[i]

ii. Score 4= evaluateFitness(Offspring)

iii. If Score > parentScore

Why DE?

1.  Replace(parent, Offspring)
* Competitive with particle swarm optimization

4.  Return (Population) and other GAs [Vesterstrom 2004]

* Easy to implement
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What is software defect prediction?

Inputs = static code measures

amc average method complexity e.g. number of JAVA byte codes
avg_cc | average McCabe average McCabe's cyclomatic complexity seen in class
ca afferent couplings how many other classes use the specific class.
cam cohesion amongst classes summation of number of different types of method parameters in every method divided by a multiplication of number of
different method parameter types in whole class and number of methods.
cbm coupling between methods total number of new/redefined methods to which all the inherited methods are coupled
cbo coupling between objects increased when the methods of one class access services of another.
ce efferent couplings how many other classes is used by the specific class.
dam data access ratio of the number of private (protected) attributes to the total number of attributes
dit depth of inheritance tree
IC inheritance coupling number of parent classes to which a given class is coupled (includes counts of methods and variables inherited)
lcom lack of cohesion in methods number of pairs of methods that do not share a reference to an instance variable.
locm3 another lack of cohesion measure | if m,a are the number of methods, attributes in a class number and (a) is the number of methods accessing an attribute,
then lcom3 = ({1 ¥4 u(a;)) —m) /(1 —m).
loc lines of code
max_cc | maximum McCabe maximum McCabe's cyclomatic complexity seen in class
mfa functional abstraction number of methods inherited by a class plus number of methods accessible by member methods of the class
moa aggregation count of the number of data declarations (class hields) whose types are user defined classes
noc number of children
npm number of public methods
rfc response for a class number of methods invoked in response to a message to the object.
wmc welghted methods per class
defect | defect Boolean: where defects found in post-release bug-tracking systems.

21
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Defect Prediction

Easy to use:

e Static code attributes can be automatically collected[Nagappan 2005]

Widely used:

e Defect prediction models have been reported at Google[Lewis 2013]

Useful:

e Competitive with supposedly more sophisticated technology [Rahman14]

22
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Almost a
“distinguished paper”
at ICSE’16...

... before it got rejected

’_(
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Experiments

Tuning algorithm: Differential Evolution 457 citations since 2008

/

Defect Learners: From [Lessmann 2008]

« CART
* Random Forests

«  WHERE-based learner[Menzies 2013]

WHERE-based learner: fastmap[Floutsos 1995] to cluster data + decision tree

26
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Parameters in Defect Learners

Learner Name Parameters Default g g Description
Range
threshold 0.5 [0.01,1] The value to determine defective or not .
infoPrune 0.33 [0.01,1] | The percentage of features to consider for the best split to build its final decision tree. eea}ut
min_sample_split 4 [1,10] The minimum number of samples required to split an internal node of its final decision tree.
Where-based min_Size 0.5 [0.01,1] | Finds min_samples_leaf in the initial clustering tree using n_samples™-5¢,
Learner wriggle 0.2 [0.01, 1] | The threshold to determine which branch in the initial clustering tree to be pruned
depthMin 2 [1,6] The minimum depth of the initial clustering tree below which no pruning for the clustering tree.
depthMax 10 [1,20] The maximum depth of the initial clustering tree.
wherePrune False T/F Whether or not to prune the initial clustering tree.
treePrune True T/F Whether or not to prune the final decision tree.
threshold 0.5 [0,1] The value to determine defective or not.
max_feature None [0.01,1] The number of features to consider when looking for the best split.
CART min_sample_split 2 [2,20] The minimum number of samples required to split an internal node.
min_samples_leaf 1 [1,20] The minimum number of samples required to be at a leaf node.
max_depth None [1, 50] The maximum depth of the tree.
threshold 0.5 [0.01,1] The value to determine defective or not.
— max_feature None [0.01,1] The number of features to consider when looking for the best split.
Rt max_leaf nodes None [1,50] Grow trees with max_leaf nodes in best-first fashion.
min_sample_split 2 [2,20] The minimum number of samples required to split an internal node.
min_samples_leaf 1 [1,20] The minimum number of samples required to be at a leaf node.
n_estimators 100 [50,150] | The number of trees in the forest. 27
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amc

Data Sets

10 open source java projects from PROMISE repo[Menzies 2016]:

e ant, camel, ivy, jedit, log4j, lucene.

e poi, synapse, velocity, xerces.

average method complexity

e.g. number of JAVA byte codes

avg_cc

average McCabe

average McCabe’s cyclomatic complexity seen in class

ca

afferent couplings

how many other classes use the specific class.

cam

cohesion amongst classes

summation of number of different types of method parameters in every method divided by a multiplication of number of
different method parameter types in whole class and number of methods.

cbm

coupling between methods

total number of new/redefined methods to which all the inherited methods are coupled

cbo

coupling between objects

increased when the methods of one class access services of another.

ce

efferent couplings

how many other classes is used by the specific class.

dam

data access

ratio of the number of private (protected) attributes to the total number of attributes

dit

depth of inheritance tree

1C

mheritance coupling

number of parent classes to which a given class 1s coupled (includes counts of methods and vartables inherited)

Icom

Tack of cohesion in methods

number of pairs of methods that do not share a reference (o an instance variable.

locm3

another lack of cohesion measure

if m.a are the number of methods. attributes in a class number and i (a) is the number of methods accessing an attribute,

then lcom3 = (( ‘~'l Yiula;)) —m)/(1—m).

loc

lines of code

max_cc

maximum McCabe

maximum McCabe’s cyclomatic complexity seen in class

mia

functional abstraction

number ol methods mherited by a class plus number of methods accessible by member methods of the class

moa

aggregation

count of the number ol data declarations (class fields) whose types are user defined classes

noc

number of children

npm

number of public methods

ric

response for a class

number of methods mvoked in response to a message to the object.

wmc

weighted methods per class

28

defect

defect

Boolean: where defects found in post-release bug-tracking systems.
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How to Design Experiment

Cross-Validation

29
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How to Design Experiment

Cross-Validation

e Slow (e.g.leave-one-out)

30
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How to Design Experiment

{} Cross-Validation
- e Slow (e.g.leave-one-out)
Tost e Mix up older data and newer data

Test

Data from the past might be .
used to test on future data *

Test

31
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Our Design

* Incremental learning approach

/{‘A}/\ /T@(\ /fﬁ}”\ 7 f\ﬁ}”\ 7

ant 1.3 ant1.4 ant 1.5 ant 1.6 ant 1.7

A

32
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Our Design

* Incremental learning approach

L A

ant 1.3 ant1.4 ant 1.5 ant1 .6 ant 1.7
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Our Design

* Incremental learning approach

A Ve ile N .; “ Ve fﬁ}’\ Ve f\‘ﬂf\ Ve f\‘ﬂf\

ant 1.3 ant1.4 ant 1.5 ant 1.6 ant 1.7
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Our Design

* Incremental learning approach

a8 8 A A

ant13 ant1.4 ant 1.5 ant 1.6 ant17

35
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Our Design

* Incremental learning approach

/T/“A},\ /’fﬂ}f\ /i{! = k\ /’i»!: = k\ /4| e

ant 1.3 ant 1.4 ant 1.5 ant 1.6 ant 1.7
Default EXP3 | Testing data

36
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Tuning Goals

Predicted results

Total Predicted positive ~ Predicted negative /‘
AailellE Actual positive  True positive(D) False negative(B)
results Actual negative  False positive(C) True negative(A)
Pd = D/(B+D)
Pf = C/(A+C)

Precision = D/(D+C)
F-measure = 2* pd*precision/(pd+precision)

37
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Tuning Goals

Predicted results

Total Predicted positive ~ Predicted negative /‘
AailellE Actual positive  True positive(D) False negative(B)
results Actual negative  False positive(C) True negative(A)
Pd = D/(B+D)
Pf = C/(A+C)

Precision = D/(D+C)
F-measure = 2* pd*precision/(pd+precision)
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Experiment

Evaluations
DE

Tunings

9 Test | Tuning Phase |
‘::i": Data

Our results are
Optimized Tunings from here

Test

¥ | Testing Phase I
Data

39
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Research Questions

Does tuning improve learners’ performance?
Does tuning change learners’ rank?
Is tuning very slow?

Should data miner be used “off-the-shelf”?
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Does Tuning Improve Performance?

100 . pr?cision -~ Tuning Goal

_50.;

1 4 8 12 17
data sets, sorted
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Does Tuning Improve Performance?

Good :
-100 . pr?cision ~— Tunlng Goal

For each point/data set:

Y = goal(tuned_learner) - goal(untuned_learner)
Y > 0: tuning improves the performance

Y< 0: tuning does worse

[
.50.‘?

—¥— WHERE
—+— CART

~—>— R.Forest

Bad

1 4 8 12 17
data sets, sorted
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Does Tuning Improve Performance?

For each point/data set:

Y = goal(tuned_learner) - goal(untuned_learner)
Y > 0: tuning improves the performance

Y< 0: tuning does worse

100

[
.50.‘?

Bad

precision <«—
T T

—¥— WHERE

—— CART
~—>— R.Forest

8 12
data sets, sorted

17

Tuning Goal

43
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Does Tuning Improve Performance?

Good :
-100 . pr«?cision ~— Tunlng Goal

For each pomt/data set: | | Lines are sorted independently,
[ the right side is always greater

Y = goal(tuned_learner) - goal(untuned_learner) r than the left sigd

Y > 0: tuning improves the performance '/

Y< 0: tuning does worse

50 &

dala Se orted o
—¥— WHERE

—+— CART prove a
~—>— R.Forest

Bad

1 4 8 12 17
data sets, sorted

44
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Does Tuning Improve Performance?

precision F
100 : T 100

50 - - mmm
X

WHERE 13/17 15/17
CART 15/17 13/17
Random Forest 12/17 10/17
50 & - -50
—¥%— WHERE —¥%— WHERE
= gfg&;?est i gﬁf{est
1 «;, ;3 1I2 17 1 ;1 ;3 1I2 17
data sets, sorted data sets, sorted
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Research Questions

Questions | Answers_ -

Does tuning improve learners’ performance?
Does tuning change learners’ rank?
Is tuning very slow?

Should data miner be used “off-the-shelf”?

46
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Research Questions

Questions | Answers_ 4

Does tuning improve learners’ performance? \/Gh
Does tuning change learners’ rank?
Is tuning very slow?

Should data miner be used “off-the-shelf”?

47
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Does Tuning Change Learners’ Rank?

WHERE CART Random Forest
Data set default Tuned default Tuned default Tuned
antV0 0 | 35 15 | 60 21 ] 44

Table 4: Precision results (best results shown in bold).

48
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Does Tuning Change Learners’ Rank?

WHERE CART Random Forest
Data set default Tuned default Tuned default Tuned
antV0 0 | 35 15 | 60 21 ] 44

Test Data

Table 4: Precision results (best results shown in bold).
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Does Tuning Change Learners’ Rank?

WHERE CART Random Forest

Dataset | default Tuned | default  Tuned default ~ Tuned .
antv0 | 0 | 35 I5 | 60 T | 44 Best result in bold

Test Data

Table 4: Precision results (best results shown in bold).
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Does Tuning Change Learners’ Rank?

WHERE CART Random Forest

Dataset | default Tuned | default  Tuned default ~ Tuned .
antV0 | 0 35 15 60 71 = Best result in bold

antV1 0 60 54 56 67 50
V2 | 45 S5 42 52 56 67
Test SCIEM Vo | 20 30 30 50 28 79
camelV1 | 27 28 38 28 34 27 .
ivy | 25 21 21 26 23 20 Results of tuning parameters
jeditVo | 34 37 56 78 52 60
jeditVl | 30 42 32 64 32 37
jeditV2 4 22 6 17 4 6
logdj | 96 91 95 98 95 100
lucene | 61 75 67 70 63 77
poiVO | 70 70 65 71 67 69
poiVl | 74 76 72 90 78 100
synapse | 61 50 50 100 60 60
velocity | 34 44 39 44 40 42
xercesV0 14 17 17 14 28 14
xercesV1 86 54 72 100 78 27

Table 4: Precision results (best results shown in bold).
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Does Tuning Change Learners’ Rank?

WHERE CART Random Forest
Dataset | default Tuned | default  Tuned default ~ Tuned .
antv0 | 0 35 5 60 71 £ Best result in bold
antV1 0 60 54 56 67 50
V2 | 45 55 42 52 56 67
Test BCICHvo | 20 300 30 50 | 2s 79
camelV1 27 28 38 28 3 27 .
ivy | 25 21 21 26 23 20 Results of tuning parameters
jeditVo | 34 37 56 78 52 60
jeditVl | 30 42 32 64 32 37
jeditV2 4 22 6 17 4 6
logdj | 96 91 95 98 95 100
lucene | 61 75 67 70 63 =——77—— Results of default parameters
poiVO | 70 70 65 71 67 69
poiVl | 74 76 72 90 78 100
synapse | 61 50 50 100 60 60
velocity | 34 44 39 44 40 42
xercesV0O | 14 17 17 14 28 14
xercesV1 | 86 54 72 100 78 27

Table 4: Precision results (best results shown in bold).
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Does Tunina Chanae Learners’ Rank?

WHERE CART Random Forest
Data set default  Tuned default Tuned default Tuned .
=0 |0 33 B 60 31 T Random Forests is better than CART for defect
antVl | 0 60 54 56 67 50 prediction[Lessmann 2008].
antV2 | 45 55 42 52 56 67
camelVO | 20 30 30 50 28 79
camelV1 27 28 38 28 34 27
ivy | 25 21 21 26 23 20
jeditvVo | 34 37 56 78 52 60
jeditV1 30 42 32 64 32 37
jeditV2 4 22 6 17 4 6
logdj | 96 91 95 98 95 100
lucene | 61 75 67 70 63 77
poiVO | 70 70 65 71 67 69
poiV1 74 76 72 90 78 100
synapse | 61 50 50 100 60 60
velocity | 34 44 39 44 40 42
xercesV0 14 17 17 14 28 14
xercesV1 86 54 72 100 78 27

Table 4: Precision results (best results shown in bold).
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Does Tunina Chanae Learners’ Rank?

WHERE CART Random Forest
Data set default Tuned default Tuned default Tuned .
=0 |0 33 E 60 51 T Random Forests is better than CART for defect
antVl | 0 60 54 56 67 50 prediction[Lessmann 2008].
antV2 | 45 55 42 52 56 67
camelVO 20 30 30 50 28 79
camelV1l | 27 28 38 28 34 27
ivy | 25 21 21 26 23 20
jeditvo | 34 37 56 78 52 60 Y ( : :
jeditVl | 30 1 25 64 > 37 @ REF is better than CART in 12/17 data sets
jeditv2 | 4 22 6 17 4 6
logdj | 96 91 95 98 95 100
lucene 61 75 67 70 63 77
poiVO | 70 70 65 71 67 69
poiVl | 74 76 72 90 78 100
synapse | 61 50 50 100 60 60
velocity | 34 44 39 44 40 42
xercesVO0 14 17 [&7 14 28 14
xercesV1 | 86 54 72 100 78 27

Table 4: Precision results (best results shown in bold).
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Does Tunina Chanae Learners’ Rank?

WHERE CART Random Forest
Data set default Tuned default Tuned default Tuned .
Vo T 0 33 B 60 31 yv} Random Forests is better than CART for defect
antVl | 0 60 54 56 67 50 prediction[Lessmann 2008].
antV2 | 45 55 42 52 56 67
camelV0 20 30 30 50 28 79
camelV1 | 27 28 38 28 34 27
ivy | 25 21 21 26 23 20
jeditVo | 34 37 56 78 52 60 . . .
el 2 | B 20 Ye: REis better than CART in 12/17 data sets
jeditv2 | 4 22 6 17 4 6
logdj | 96 91 95 98 95 100 :
lucene 61 75 67 70 63 77 After Tunlng
poiVo | 70 70 65 71 67 69 2
poiVl | 74 76 72 90 78 100 | _ _
synapse | 61 50 50 100 60 60 “Q - RF is better than CART in 5/17 data sets
velocity | 34 44 39 %) 40 42
xercesVO0 14 17 17 14 28 14
xercesV1 86 54 72 100 78 217

Table 4: Precision results (best results shown in bold).
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Does Tuning Change Learners’ Rank?

WHERE CART Random Forest
Data set default Tuned default Tuned default Tuned i
antvo | 0 20 20 20 28 33 Random Forests is better than CART for defect
antvli | B 38 37 43 38 9 prediction[Lessmann 2008].
antV2 | 47 50 45 49 57 56
camelVO | 31 28 39 28 40 30
camelV1 | 34 34 38 32 42 33
ivy | 39 34 28 40 35 33
| o L |5 . B - Ye: RF is better than CART in 16/17 data sets
jeditv2 | 8 11 10 10 8 9
logdj | 47 50 53 37 60 47 :
lucene | 73 73 65 72 70 76 After Tuning
poiVo | 50 74 31 64 45 77
poiVl | 75 78 68 69 77 78 “0\ , ,
synapse | 49 56 43 60 52 53 WY RF is better than CART in 9/17 data sets
velocity | 51 53 53 51 56 51
xercesVO | 19 22 19 26 34 21
xercesV1 32 70 34 35 42 71
Table 5: F-measure results (best results shown in bold).

SAME pattern found in F-measure results -,
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Research Questions

Questions | Answers_ 4

Does tuning improve learners’ performance? \/Gh
Does tuning change learners’ rank?
Is tuning very slow?

Should data miner be used “off-the-shelf”?
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Research Questions

Questions | Answers_ 4

Does tuning improve learners’ performance? \/Gh
Does tuning change learners’ rank? \’eg,
Is tuning very slow?

Should data miner be used “off-the-shelf”?
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Is Tuning Impractically Slow?

Runtimes in sec

Datasets | Tuned_Where aive_Where | Tuned_CART | Naive CART | ed_RanFs Najve RanFst
antVO | 50/9547 | 1.65 | 60 /'5.08 | 0.08 | 60 /9.78 | 0.20

Evaluations/Runtimes for tuned and default learners with DE(in sec), optimizing for F 59
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Is Tuning Impractically Slow?

# of evaluations

Datasets | Tuned Where | Naive_Where | Tungd CART | Naive CART ned_RanFst | Naive_RanFst
antv0 | 8079547 | 1.65 [ T60/508 | 008 | 607978 | 0.20

Evaluations/Runtimes for tuned and default learners with DE(in sec), optimizing for F 60
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Is Tuning Impractically Slow?

Datasets Tuned_Where Naive_Where Tuned_CART Naive_CART Tuned_RanFst Naive_RanFst
antV0 50/95.47 1.65 60/5.08 0.08 60/9.78 0.20
antV1 60/224.67 3.03 50/6.52 0.12 60/14.13 0.25
antV2 70/ 644.99 8.24 50/9.00 0.24 60/16.75 0.44
camelV0 70/ 690.62 7.93 70/ 12.68 0.24 110/28.49 0.34
camelV1 60/ 1596.77 23.56 60/17.13 0.27 70/ 33.96 0.77
Evaluations: ivy 60 / 66.69 0.97 60/4.26 0.07 60/ 8.89 0.19
50~100 jeditVo 80 /459.30 5.33 80/ 8.69 0.11 90/ 18.40 0.32
jeditV1 60/421.56 6.59 80/9.05 0.12 80/17.93 0.36
jeditV2 90/ 595.56 6.88 60/7.90 0.14 110/27.34 0.38
log4j 50/76.09 1.33 50/2.60 0.06 80/9.69 0.15
lucene 80/236.45 2.60 70/76.07 0.10 60/9.77 0.25
poiVO 60/263.12 3.92 70/7.42 0.09 130 /25.86 0.28
poiVl 50/398.33 6.94 70/9.31 0.13 50/12.67 0.29
synapse 70/ 144.09 1.85 50/3.88 0.07 50/8.13 0.19
velocity 60/184.10 2.68 50/4.27 0.07 100/ 15.18 0.21
xercesV0 60/136.87 1.98 80/9.17 0.10 70/ 14.17 0.22
xercesV1 80/1173.92 12.78 60/ 10.47 0.16 50/ 18.27 0.40

Evaluations/Runtimes for tuned and default learners with DE(in sec), optimizing for F
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Is Tuning Impractically Slow?
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Runtimes for tuned and default learners with DE and GridSearch(in sec), optimizing for F & precision
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Research Questions

Questions | Answers_ 4

Does tuning improve learners’ performance? \/Gh
Does tuning change learners’ rank? \’eg,
Is tuning very slow?

Should data miner be used “off-the-shelf”?
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Research Questions

Questions | Answers_ 4

Does tuning improve learners’ performance? \/Gh
Does tuning change learners’ rank? \’es.
Is tuning very slow? “Q‘-

Should data miner be used “off-the-shelf”?
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Should We Use “off-the-shelf” Tunings?

Learner Name Parameters Default Tuning Description
Range
threshold 0.5 [0.01,1] The value to determine defective or not .
infoPrune 0.33 [0.01,1] | The percentage of features to consider for the best split to build its final decision tree.
min_sample_split 4 [1,10] The minimum number of samples required to split an internal node of its final decision tree.
Where-based min_Size 0.5 [0.01,1] | Finds min_samples_leaf in the initial clustering tree using n_samples™"->¢.

Learner wriggle 0.2 [0.01, 1] | The threshold to determine which branch in the initial clustering tree to be pruned
depthMin 2 [1,6] The minimum depth of the initial clustering tree below which no pruning for the clustering tree.
depthMax 10 [1,20] The maximum depth of the initial clustering tree.

wherePrune False T/F Whether or not to prune the initial clustering tree.
treePrune True T/F Whether or not to prune the final decision tree.

Select four representatives
e threshold: 0.5
e infoPrune: 0.33
e min_Size: 0.5

e wriggle: 0.2 65
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Should We Use “off-the-shelf” Tunings?

Default settings
e threshold: 0.5
e infoPrune: 0.33
053 +4+ 444+ +++4++++4+ 441

e min Size: 0.5
2535+ 4+t —_

B e e A Eaim o ! ° Wriggle: 02

—#— threshold

—4— infoPrune
«— min_Size

—g— wriggle

1 4 8 12 17
data sets, sorted 66
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Should We Use “off-the-shelf” Tunings?

Default settings

e threshold: 0.5

y axis is the values of e infoPrune: 0.33
054+ +++++++4+FF4+44 this parameter for
0.33 F—t——t each test data

e min_Size: 0.5

B e i ° Wriggle: 02

0

—#— threshold

—4— infoPrune
- min_Size

—a— wriggle

1 4 8 12 17
data sets, sorted 67
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Should We Use “off-the-shelf” Tunings?

Default settings

e threshold: 0.5

y axis is the values of e infoPrune: 0.33
054+ +++++++4+FF4+44 this parameter for
0.33 F—t——t each test data * min_Size 105
R e R T e " ) Wriggle: 02
0
—— threshold 17 data sets, sorted
—++— infoPrune
b ra. Scs by y values for each
S i parameter.
1 4 ] 12 17

data sets, sorted 68
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Should We Use “off-the-shelf” Tunings?

e Tunings learned were different __ Precision __F
o in different data sets 1! it
o for different goals.
e Tunings learned by DE were often very different to e R
the default 0.5 'x« DI o 4 05} p F oy
0.33 {1 o033} ,?‘{' )
o threshold: 0.5 ,
0.2 B 0.2 % -
o min_Size: 0.5 ; 0‘
o infoPrune: 0.33
—3— _thfre;hold —— Fhfrer,hold
wriggle: 0.2 s =
—g— wriggle —g— wriggle

8 12
data sets, sorted

1 4 8 12
data sets, sorted
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Should We Use “off-the-shelf” Tunings?

e Tunings learned were different __ Precision __F
o in different data sets ik 1
o for different goals.
e Tunings learned by DE were often very different to e R
the default. 65 —/*'\ S = 05F ,?’»:: T R
0.33 {1 o033} ,?‘{' )
o threshold: 0.5 ,
0.2 B 0.2 % -
o min_Size: 0.5 ; 0‘
o infoPrune: 0.33
—3— _thfre;hold —— Fhfrer,hold
wriggle: 0.2 s =
—g— wriggle —g— wriggle

8 12
data sets, sorted

1 4 8 12
data sets, sorted
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Should We Use “off-the-shelf” Tunings?

e Tunings learned were different __ Precision __F
o in different data sets ik 1
o for different goals.
e Tunings learned by DE were often very different to e R
the default a5 -,\ R = — | A5+ /}’: - C —
0.33 {1 o033} ,?‘{' )
o threshold: 0.5
0.2 . 0.2¢f 5
o min_Size: 0.5 ; 0‘
o infoPrune: 0.33
—3— _thfre;hold —— Fhfrer,hold
o wriggle: 0.2 % min Sizs —e—min. Size
—g— wriggle —g— wriggle

L
1 4

8 12
data sets, sorted

17

1 4 8 12
data sets, sorted
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Should We Use “off-the-shelf” Tunings?

e Tunings learned were different ___ Precision_ ¥

o in different data sets
o for different goals.

e Tunings learned by DE were often very different to

the default. > i
U35
o threshold: 0.5
0.2 1 02ef,
o min_Size : 0.5 ! 0‘
o infoPrune: 0.33
—— thre;hold —e— threr,hold
. —— infoPrune ——— infoPrune
o wriggle: 0.2 —%— min Sie —%— min Sie
—g— wriggle —g— wriggle
4 8 12 7 1 4 8 12 17
data sets, sorted data sets, sorted
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Should We Use “off-the-shelf” Tunings?

e Tunings learned were different ___ Precision_ ¥

o in different data sets 1}
o for different goals.

e Tunings learned by DE were often very different to
the default.

o threshold: 0.5

o min_Size: 0.5

0 0
o infoPrune: 0.33
—¥— threshold —}¢— threshold
. . —4— infoPrune ——— infoPrune
@) ergg Ie . 0 2 > min_Size —>—— min_Size
—g— wriggle —g— wriggle
1 4 8 12 17 1 4 8 12 17
data sets, sorted data sets, sorted
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Research Questions

Questions | Answers_ 4

Does tuning improve learners’ performance? \/Gh
Does tuning change learners’ rank? \’es.
Is tuning very slow? “Q‘-

Should data miner be used “off-the-shelf”?
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Research Questions

Questions | Answers_ 4

Does tuning improve learners’ performance? \/Gh

Does tuning change learners’ rank? Yes.
Is tuning very slow? ‘!Q‘-
Should data miner be used “off-the-shelf”? “Q‘.,
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Really?

| have a question!
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Review

precision F
100 T T 100 T

50

Improvements of tuned learners
over untuned learners.

50 }
—¥— WHERE —¥— WHERE
—4— CART —4— CART
—>— R.Forest ~—3—— R.Forest
1 1 L 1 1 1
1 4 8 12 17 1 4 8 12 17 77

data sets, sorted data sets, sorted
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precision F
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1 4 8 12 17 1 4 8 12 17 78

data sets, sorted data sets, sorted
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precision F
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Review

precision F
100 10N

50

B - 72\
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—>»— R.Forest ~—3—— R.Forest
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data sets, sorted data sets, sorted
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Roadmap

. EXxpectation management
. Motivation

. Background

. Progress Report

. Future Work & Challenges

81
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Harder and Harder Problems

Deep Learning

Text Mining
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Email:

Bug Report: liking email
classification, with source
triage, code

Text Mining

classification,

e What to tune?

o Data Mining algorithms
o Feature processing
m Tfidf
m  L2norm
m Hashing trick
...

e Work with Zhe, Rahul, Di, etc....LN people!

Bug report:[Wang’ 2008, Anvik’ 2006, Guo’ 2010]
Email:[Bacchelli 2011, Dredze 2006]
Source code:[Tan’ 2012, Yang’ 2012, Shridihara’2011]

83



NC STATE UNIVERSITY

Deep Learning

4“?‘
=€; o i L _/“‘ :
‘ms‘.}‘ S A'é'/ '

A =
S
8 » A &\

e Code suggestion[White 2015]

Al

N5 \44'4.\'/'"‘
) o) N

e Buggy files localization[Lam 2015]

—7

e \What to tune?

o number of hidden layer,
o learning rate,
o amount of regularization

@)

e Work with Prof.Tien Nguyen (ISU)
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Improve tuning performance

. Work with JC Nam

Cluster data to transfer knowledge

« Improve heterogeneous defect prediction.

Relevancy-based optimization?

Cluster tuning/training data
Select clusters that are nearest neighbors to testing as tuning/training data.
* Apply those tunings in testing.
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Does tuning improve learners’ performance? \/G‘

Does tuning change learners’ rank? Yeg,
Is tuning very slow? ﬁJ‘.J
Should data miner be used “off-the-shelf”? “Q‘-
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