
Tuning for Software Analytics: is it Really
Necessary?

Wei Fu
wfu@ncsu.edu

mailto:wfu@ncsu.edu

Roadmap

• Expectation management
• Motivation
• Background
• Progress Report
• Future Work & Challenges

2

What to Tune?

3

Defect Predictors

Text Mining

Deep Learning

What to Tune?

4

Defect Predictors

Text Mining

Deep Learning

This talk
(walk before you run)

What to Tune?

5

Defect Predictors

Text Mining

Deep Learning

This talk
(walk before you run)

Future work
(much more challenging)

Roadmap

• Expectation management
• Motivation
• Background
• Progress Report
• Future Work & Challenges

6

What is Parameter Tuning?

7

● Data mining algorithms usually have some
“magic parameters’’ to control their behavior to
explore data.

○ Random Forests:

■ Number of trees

■ Depth of the tree

■ …...

● When tuning a data miner, data miner will use
different heuristics and generate different
models.

Training
Data

Testing
Data

of trees = 50

pd=0.7
Random Forests

What is Parameter Tuning?

8

● Data mining algorithms usually have some
“magic parameters’’ to control their behavior to
explore data.

○ Random Forests:

■ Number of trees

■ Depth of the tree

■ …...

● When tuning a data miner, data miner will use
different heuristics and generate different
models.

Training
Data

Testing
Data

of trees = 50

of trees = 100

pd=0.7

pd=0.9

Random Forests

Note: outside of SE data science,
other communities endorse tuning

● Other communities
○ Test error improved from 11% to 9.5% on

image classification [Snoek’ 2012]

○ Random search is able to find good
hyper-parameters within a small fraction of
the computation time [Bergstra ’2012]

○ Analytic parameter selection yields good
generalization performance of SVM
[Cherkassky ’2004]

9
CIFAR-10 *

* https://www.cs.toronto.edu/~kriz/cifar.html

But for “software defect prediction”….
… mostly ignored

10

● “Software defect prediction”
○ Guessing where the bugs are, using models

built via data mining
○ (see slide20 for more details)

● Recent lit review
○ Only 2/50 acknowledged impact of tunings.
○ Almost all using learners “off-the-shelf”

● Two exceptions:
○ [Tantithamthavorn 2016](Grid Search)

■ 43 HPC nodes with 24 hyperthreads
■ 65% learners: 30 minutes
■ 35% learners: over 30 minutes

○ [Lessmann 2008](Grid Search)
■ tune a small set of their learners
■ no runtime reports

11

Why ignored?

Cause they are so well
explored all already… right? CPU intensive!

12

● Arcuri et al reported their tuning may require
weeks, or more, of CPU time[Arcuri’ 2011].

● Wang et al. needed 15 years of CPU to
explore 9.3 million candidate configurations for
software clone detectors[Wang’ 2013].

CPU intensive!

Why ignored?

13

Why ignored?

CPU intensive!

14

Open issues
(for SE data science)

We’ll get back to these… much later in the talk

Roadmap

15

• Expectation management
• Motivation
• Background
• Progress Report
• Future Work & Challenges

How to Tune?

• Mathematical Optimization
• Grid Search
• Evolutionary Algorithms

16

17

● Based on the property of objective function and constraint function:
○ linear programing
○ non-linear programing
○ ….

● If differentiable, methods, like gradient descent, are to solve such problem
○ Linear regression and logistic regression
○ SVM, regularization parameter C[Cherkassky’2004]

● Note used much in SE because software not simple differential functions:

○ Also, issue of computational complexity of SE problems[Harman 2001]

Objective

Constraint functions

Mathematical Optimization

Grid Search

18

● Divide all C configuration options into N values

● Evaluate N^C different combinations

○ Slow

○ Miss important optimization

 9 parameter into 7 values
7^9= 40 million evaluations!

19

1. Population ⬅ initializePopulation(N)
2. evaluatePopulation(Population)
3. While not stopCondition()

a. Parents ⬅ selectParents(Population)
b. Offspring ⬅ crossOverMutate(Parents)
c. evaluateFitness(offspring)
d. Replace least-fit population with new offspring

4. Return (Population)

Evolutionary Algorithms
E.g. GA:

E.g.: MOEA/D, NSGA-III, DE

Other approaches:
particle swarm, ant-colony, bee colony, etc.

Future work!

Differential Evolution

20

● Pick three (X, Y, Z) from the population
● For i in len(parent)
● New[i] = X[i]+ f * (Y[i]-Z[i]) (e.g., f=0.75)
● If random < CR:(CR=0.3)

○ parent[i] = New[i]

1. Population ⬅ InitializePopulation(N)

2. evaluatePopulation(Population)

3. While not StopCondition()

a. For parent in Population

i. Offspring ⬅ CrossOverMutate(parent)

ii. Score ⬅ evaluateFitness(Offspring)

iii. If Score > parentScore

1. Replace(parent, Offspring)

4. Return (Population)

Why DE?

* Competitive with particle swarm optimization
and other GAs [Vesterstrom 2004]

* Easy to implement

What is software defect prediction?

21Output = defect predicted?

Inputs = static code measures

22

Easy to use:
● Static code attributes can be automatically collected[Nagappan 2005]

Widely used:
● Defect prediction models have been reported at Google[Lewis 2013]

Useful:
● Competitive with supposedly more sophisticated technology [Rahman14]

Defect Prediction

Roadmap

23

• Expectation management
• Motivation
• Background
• Progress Report
• Future Work & Challenges

W. Fu, T. Menzies, X. Shen “Tuning for Software Analytics:is it Really Necessary?”, Information
and Software Technology, Elsevier, submitted.

24

W. Fu, T. Menzies, X. Shen “Tuning for Software Analytics:is it Really Necessary?”, Information
and Software Technology, Elsevier, submitted.

25

Almost a
“distinguished paper”
at ICSE’16…

… before it got rejected
 ;-(

Experiments

Tuning algorithm: Differential Evolution

Defect Learners: From [Lessmann 2008]

• CART

• Random Forests

• WHERE-based learner[Menzies 2013]

WHERE-based learner: fastmap[Floutsos 1995] to cluster data + decision tree

26

457 citations since 2008

Parameters in Defect Learners

27

Data Sets

28

10 open source java projects from PROMISE repo[Menzies 2016]:
● ant , camel, ivy, jedit, log4j, lucene.

● poi, synapse, velocity, xerces.

How to Design Experiment

29

Cross-Validation

How to Design Experiment

30

Cross-Validation

● Slow (e.g.leave-one-out)

How to Design Experiment

31

Cross-Validation

● Slow (e.g.leave-one-out)

● Mix up older data and newer data

Data from the past might be
used to test on future data

Our Design
• Incremental learning approach

32

ant 1.3 ant 1.4 ant 1.5 ant 1.6 ant 1.7

Our Design
• Incremental learning approach

33

ant 1.3 ant 1.4 ant 1.5 ant 1.6 ant 1.7

Our Design
• Incremental learning approach

34

ant 1.3 ant 1.4 ant 1.5 ant 1.6 ant 1.7

Our Design
• Incremental learning approach

35

ant 1.3 ant 1.4 ant 1.5 ant 1.6 ant 1.7

Our Design
• Incremental learning approach

36

ant 1.3 ant 1.4 ant 1.5 ant 1.6 ant 1.7

Tuning Goals

37

Pd = D/(B+D)
Pf = C/(A+C)
Precision = D/(D+C)
F-measure = 2* pd*precision/(pd+precision)

Tuning Goals

38

Pd = D/(B+D)
Pf = C/(A+C)
Precision = D/(D+C)
F-measure = 2* pd*precision/(pd+precision)

Training
Data

Testing
Data

Tuning
Data

DE
Evaluations

Tunings

Build

Optimized Tunings

Test

Test

Phase I

Phase II

39

Experiment

Build

Our results are
from here

40

Research Questions

Does Tuning Improve Performance?

41

Tuning Goal

Does Tuning Improve Performance?

42

Tuning Goal

For each point/data set:
Y = goal(tuned_learner) - goal(untuned_learner)

Y > 0: tuning improves the performance

Y< 0: tuning does worse

Good

Bad

Does Tuning Improve Performance?

43

Tuning Goal

For each point/data set:
Y = goal(tuned_learner) - goal(untuned_learner)

Y > 0: tuning improves the performance

Y< 0: tuning does worse

17 data sets, sorted by
improvements(x-axis)

Good

Bad

Does Tuning Improve Performance?

44

Tuning Goal

For each point/data set:
Y = goal(tuned_learner) - goal(untuned_learner)

Y > 0: tuning improves the performance

Y< 0: tuning does worse

17 data sets, sorted by
improvements(x-axis)

Lines are sorted independently,
the right side is always greater
than the left sigd

Good

Bad

Does Tuning Improve Performance?

45

46

Research Questions

47

Research Questions

Does Tuning Change Learners’ Rank?

48Tuning Goal

Does Tuning Change Learners’ Rank?

49Tuning Goal

Test Data

Does Tuning Change Learners’ Rank?

50Tuning Goal

Test Data

Best result in bold

Does Tuning Change Learners’ Rank?

51Tuning Goal

Test Data

Results of tuning parameters

Best result in bold

Does Tuning Change Learners’ Rank?

52Tuning Goal

Test Data

Results of tuning parameters

Best result in bold

Results of default parameters

Does Tuning Change Learners’ Rank?
Random Forests is better than CART for defect
prediction[Lessmann 2008].

53

Does Tuning Change Learners’ Rank?
Random Forests is better than CART for defect
prediction[Lessmann 2008].

54

RF is better than CART in 12/17 data sets

Does Tuning Change Learners’ Rank?
Random Forests is better than CART for defect
prediction[Lessmann 2008].

55

RF is better than CART in 12/17 data sets

After Tuning

RF is better than CART in 5/17 data sets

Does Tuning Change Learners’ Rank?

56SAME pattern found in F-measure results

Random Forests is better than CART for defect
prediction[Lessmann 2008].

RF is better than CART in 16/17 data sets

After Tuning

RF is better than CART in 9/17 data sets

57

Research Questions

58

Research Questions

Is Tuning Impractically Slow?

Evaluations/Runtimes for tuned and default learners with DE(in sec), optimizing for F 59

Runtimes in sec

Is Tuning Impractically Slow?

Evaluations/Runtimes for tuned and default learners with DE(in sec), optimizing for F 60

of evaluations

Is Tuning Impractically Slow?

61

Evaluations:
 50~100

Evaluations/Runtimes for tuned and default learners with DE(in sec), optimizing for F

Is Tuning Impractically Slow?

Runtimes for tuned and default learners with DE and GridSearch(in sec), optimizing for F & precision
62

SECONDS 22 days

3.7 hours
42 hours

1 hour

63

Research Questions

64

Research Questions

Should We Use “off-the-shelf” Tunings?

Select four representatives

● threshold: 0.5

● infoPrune: 0.33

● min_Size : 0.5

● wriggle: 0.2 65

Should We Use “off-the-shelf” Tunings?

Default settings

● threshold: 0.5

● infoPrune: 0.33

● min_Size : 0.5

● wriggle: 0.2

66

Tuning Goal

Should We Use “off-the-shelf” Tunings?

Default settings

● threshold: 0.5

● infoPrune: 0.33

● min_Size : 0.5

● wriggle: 0.2

67

Tuning Goal

y axis is the values of
this parameter for
each test data

Should We Use “off-the-shelf” Tunings?

Default settings

● threshold: 0.5

● infoPrune: 0.33

● min_Size : 0.5

● wriggle: 0.2

68

Tuning Goal

y axis is the values of
this parameter for
each test data

17 data sets, sorted
by y values for each
parameter.

Should We Use “off-the-shelf” Tunings?
● Tunings learned were different

○ in different data sets

○ for different goals.

● Tunings learned by DE were often very different to
the default.

○ threshold: 0.5

○ min_Size : 0.5

○ infoPrune: 0.33

○ wriggle: 0.2

69

Should We Use “off-the-shelf” Tunings?
● Tunings learned were different

○ in different data sets

○ for different goals.

● Tunings learned by DE were often very different to
the default.

○ threshold: 0.5

○ min_Size : 0.5

○ infoPrune: 0.33

○ wriggle: 0.2

70

Should We Use “off-the-shelf” Tunings?
● Tunings learned were different

○ in different data sets

○ for different goals.

● Tunings learned by DE were often very different to
the default.

○ threshold: 0.5

○ min_Size : 0.5

○ infoPrune: 0.33

○ wriggle: 0.2

71

Should We Use “off-the-shelf” Tunings?
● Tunings learned were different

○ in different data sets

○ for different goals.

● Tunings learned by DE were often very different to
the default.

○ threshold: 0.5

○ min_Size : 0.5

○ infoPrune: 0.33

○ wriggle: 0.2

72

Should We Use “off-the-shelf” Tunings?
● Tunings learned were different

○ in different data sets

○ for different goals.

● Tunings learned by DE were often very different to
the default.

○ threshold: 0.5

○ min_Size : 0.5

○ infoPrune: 0.33

○ wriggle: 0.2

73

74

Research Questions

75

Research Questions

76

 Really?
 I have a question!

Review

77

Improvements of tuned learners
over untuned learners.

Review

78

Review

79

Review

80

Roadmap

81

• Expectation management
• Motivation
• Background
• Progress Report
• Future Work & Challenges

Harder and Harder Problems

82

Defect Prediction

Text Mining

Deep Learning

83

● What to tune?

○ Data Mining algorithms

○ Feature processing

■ Tfidf

■ L2norm

■ Hashing trick

■ …..

● Work with Zhe, Rahul, Di, etc….LN people!

Bug report:[Wang’ 2008, Anvik’ 2006, Guo’ 2010]
Email:[Bacchelli 2011, Dredze 2006]
Source code:[Tan’ 2012, Yang’ 2012, Shridihara’2011]

Deep Learning

84

● Code suggestion[White 2015]

● Buggy files localization[Lam 2015]

● What to tune?

○ number of hidden layer,

○ learning rate,

○ amount of regularization

○ ...

● Work with Prof.Tien Nguyen (ISU)

Improve tuning performance

• Work with JC Nam
• Cluster data to transfer knowledge

• Improve heterogeneous defect prediction.

• Relevancy-based optimization?
• Cluster tuning/training data

• Select clusters that are nearest neighbors to testing as tuning/training data.

• Apply those tunings in testing.

85

86

Reference
1. [Snoek’ 2012]Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams. "Practical bayesian optimization of machine learning algorithms."

Advances in neural information processing systems. 2012.
2. [Bergstra’2012]Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." The Journal of Machine

Learning Research 13.1 (2012): 281-305.
3. [Cherkassky’2004]Cherkassky, Vladimir, and Yunqian Ma. "Practical selection of SVM parameters and noise estimation for SVM

regression." Neural networks 17.1 (2004): 113-126.
4. [Panichella’2013]Panichella, Annibale, et al. "How to effectively use topic models for software engineering tasks? an approach based

on genetic algorithms." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.
5. [Arcuri’ 2011]Arcuri, Andrea, and Gordon Fraser. "On parameter tuning in search based software engineering." Search Based Software

Engineering. Springer Berlin Heidelberg, 2011. 33-47.
6. [Corazza’2010]Corazza, Anna, et al. "How effective is tabu search to configure support vector regression for effort estimation?."

Proceedings of the 6th international conference on predictive models in software engineering. ACM, 2010.
7. [Wang’ 2013]Wang, Tiantian, et al. "Searching for better configurations: a rigorous approach to clone evaluation." Proceedings of the

2013 9th Joint Meeting on Foundations of Software Engineering. ACM, 2013.
8. [Lessmann ‘2008]Lessmann, Stefan, et al. "Benchmarking classification models for software defect prediction: A proposed framework

and novel findings." Software Engineering, IEEE Transactions on 34.4 (2008): 485-496.
9. [Tantithamthavorn ‘2016]Tantithamthavorn, Chakkrit, et al. "Automated Parameter Optimization of Classification Techniques for Defect

Prediction Models." The International Conference on Software Engineering (ICSE), page To appear. 2016.
10. [White 2015]M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk, “Toward deep learning software repositories,” in Mining

Software Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on, pp. 334–345,IEEE, 2015.
11. [Lam 2015]A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Combining deep learning with information retrieval to localize

buggy files for bug reports (n),” in Automated Software Engineering (ASE), 2015 30th IEEE/ACM International Conference on, pp.
476–481, IEEE, 2015.

87

Reference
12. [Rahman 2013]Rahman, Foyzur, and Premkumar Devanbu. "How, and why, process metrics are better." Proceedings of the 2013

International Conference on Software Engineering. IEEE Press, 2013.
13. [Moser 2008]Moser, Raimund, Witold Pedrycz, and Giancarlo Succi. "A comparative analysis of the efficiency of change metrics and

static code attributes for defect prediction." Software Engineering, 2008. ICSE'08. ACM/IEEE 30th International Conference on. IEEE,
2008.

14. [Bell 2013]Bell, Robert M., Thomas J. Ostrand, and Elaine J. Weyuker. "The limited impact of individual developer data on software
defect prediction." Empirical Software Engineering 18.3 (2013): 478-505.

15. [Menzies 2013]Menzies, Tim, et al. "Local versus global lessons for defect prediction and effort estimation." Software Engineering,
IEEE Transactions on 39.6 (2013): 822-834.

16. [Menzies 2016]Menzies, T., Krishna, R., Pryor, D. (2016). The Promise Repository of Empirical Software Engineering Data;
http://openscience.us/repo. North Carolina State University, Department of Computer Science

17. [Nagappan 2005]Nagappan, Nachiappan, and Thomas Ball. "Static analysis tools as early indicators of pre-release defect density."
Proceedings of the 27th international conference on Software engineering. ACM, 2005.

18. [Lewis 2013]Lewis, Chris, et al. "Does bug prediction support human developers? findings from a google case study." Proceedings of
the 2013 International Conference on Software Engineering. IEEE Press, 2013.

19. [Menzies 2007]Menzies, Tim, Jeremy Greenwald, and Art Frank. "Data mining static code attributes to learn defect predictors."
Software Engineering, IEEE Transactions on 33.1 (2007): 2-13.

20. [Harman 2001]Harman, Mark, and Bryan F. Jones. "Search-based software engineering."Information and software Technology 43.14
(2001): 833-839.

21. [Wang 2008]Wang, Xiaoyin, et al. "An approach to detecting duplicate bug reports using natural language and execution information."
Proceedings of the 30th international conference on Software engineering. ACM, 2008.

22. [Anvik 2006]Anvik, John, Lyndon Hiew, and Gail C. Murphy. "Who should fix this bug?."Proceedings of the 28th international
conference on Software engineering. ACM, 2006.

23. [Guo 2010]Guo, Philip J., et al. "Characterizing and predicting which bugs get fixed: an empirical study of Microsoft Windows." Software
Engineering, 2010 ACM/IEEE 32nd International Conference on. Vol. 1. IEEE, 2010.

88

Reference
24. [Tan 2012]Tan, Shin Hwei, et al. "@ tcomment: Testing javadoc comments to detect comment-code inconsistencies." Software Testing,

Verification and Validation (ICST), 2012 IEEE Fifth International Conference on. IEEE, 2012.
25. [Yang 2012]Yang, Jinqiu, and Lin Tan. "Inferring semantically related words from software context." Proceedings of the 9th IEEE

Working Conference on Mining Software Repositories. IEEE Press, 2012.
26. [Sridhara 2011]Sridhara, Giriprasad, Lori Pollock, and K. Vijay-Shanker. "Automatically detecting and describing high level actions

within methods." Software Engineering (ICSE), 2011 33rd International Conference on. IEEE, 2011.
27. [Bacchelli 2011]Bacchelli, Alberto, Michele Lanza, and Romain Robbes. "Linking e-mails and source code artifacts." Proceedings of the

32nd ACM/IEEE International Conference on Software Engineering-Volume 1. ACM, 2010.
28. [Drehze 2006]Dredze, Mark, Tessa Lau, and Nicholas Kushmerick. "Automatically classifying emails into activities." Proceedings of the

11th international conference on Intelligent user interfaces. ACM, 2006.
29. [Vesterstrom 2004]Vesterstrøm, Jakob, and Rene Thomsen. "A comparative study of differential evolution, particle swarm optimization,

and evolutionary algorithms on numerical benchmark problems." Evolutionary Computation, 2004. CEC2004. Congress on. Vol. 2.
IEEE, 2004.

30. [Faloutsos 1995]Faloutsos, Christos, and King-Ip Lin. FastMap: A fast algorithm for indexing, data-mining and visualization of traditional
and multimedia datasets. Vol. 24. No. 2. ACM, 1995.

89

