Tuning for Software Analytics: is it Really Necessary?

Wei Fu wfu@ncsu.edu

Roadmap

- Expectation management
- Motivation
- · Background
- Progress Report
- Future Work & Challenges

NC STATE UNIVERSITY

What to Tune?

What to Tune?

What to Tune?

Roadmap

- Expectation management
- Motivation
- · Background
- Progress Report
- Future Work & Challenges

What is Parameter Tuning?

- Data mining algorithms usually have some "magic parameters" to control their behavior to explore data.
 - Random Forests:

.

- Number of trees
- Depth of the tree

to Random Forests Training Data Testing Data Testing

• When tuning a data miner, data miner will use different heuristics and generate different models.

What is Parameter Tuning?

- Data mining algorithms usually have some "magic parameters" to control their behavior to explore data.
 - Random Forests:

.

- Number of trees
- Depth of the tree
- When tuning a data miner, data miner will use different heuristics and generate different models.

Note: outside of SE data science, other communities endorse tuning

- Other communities
 - Test error improved from 11% to 9.5% on image classification [Snoek' 2012]
 - Random search is able to find good hyper-parameters within a small fraction of the computation time [Bergstra '2012]
 - Analytic parameter selection yields good generalization performance of SVM [Cherkassky '2004]

CIFAR-10 *

But for "software defect prediction".... ... mostly ignored

	Web Images M	Dre
	Google	"data mining" "software engineering" "defect prediction"
	Scholar	About 1,500 results (0.10 sec)
	Articles Case law My library	Data mining static code attributes to learn defect predictors <u>T Menzies</u> . J Greenwald, A Frank - Software Engineering, IEEE, 2007 - leeexplore.leee.org sample used to learn a predictor) can make different attributes appear most useful for defect prediction and the PROMISE code repository are places to store and discuss software engineering data sets Data mining is a large and active field and any single study can only use a Cited by 632. Related articles All 14 versions Cite Save
	Any time Since 2015 Since 2014 Since 2011 Custom range	Cross-project defect prediction: a large scale experiment on data vs. domain vs. process <u>Tzimmermann</u> , N Nagappan, H Gall, E Gigersoftware engineering2009 - diacm.org So far, only a few have studies focused on transferring prediction models from one project to another. In this paper, we study cross-project defect prediction models on a large scaleD.2.9 [Software Engineering]: Management—Software quality assurance (SQA) General Terms Cited by 207. Related articles All 11 versions Cite Save
	Sort by relevance Sort by date	Problems with precision: A response to "comments on 'data mining static code attributes to learn defect predictors" <u>I Menzies</u> , A DekhyaEngineering. 2007 - digitalcommons.calpoly.edu Index Terms— Defect prediction , accuracy measures, static code attributes, empirical that the low methed the transmission of the same Text Matter Schute forder accurate the
	include patents include citations	precision detectors seen in Menzies et al. 5 paper Data Mining State Code no such characterization has been previously reported (at least, not in the software engineering literature Cited by 107 Related articles All 11 versions Cite Save
	Create alert	Software defect association mining and defect correction effort prediction Q Song, M Shepperd, M CartwrightSoftware Engineering, 2006 - ieeexplore.ieee.org Current defect prediction work focuses on estimating the number of defects remaining in software systems IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOLtogether with their inherent understandability make association rule mining a popular data mining method Cited by 145 Related articles All 24 versions Cite Save
		Benchmarking classification models for software defect prediction: A proposed framework and novel findings S Lessman, B Baesons, C Mues Software Engineering,, 2008 - iseexplore.ieee.org Index Terms—Complexity measures, data mining, formal methods, statistical methods, software defect prediction. C for organizing comparative classification ex- periments in software defect prediction and conduct a IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL Cited by 408 Related articles All 13 versions Cite Save
		On the relation of refactorings and software defect prediction J Ratzinger, T Sigmund, <u>HC Gall</u> - Proceedings of the 2008 international, 2008 - dLacm.org A critique of software defect prediction models in Proceedings of the International Symposium on Empirical Software Tenjineering and Measurement (ISEM). September 2007. [9] F. Van Rysselberghe Data Mining: Practical machine learning tools and techniques Cited by 69 Related articles A II8 versions. Cite Save

- "Software defect prediction"
 - Guessing where the bugs are, using models built via data mining
 - (see slide20 for more details)
- Recent lit review
 - Only 2/50 acknowledged impact of tunings.
 - Almost all using learners "off-the-shelf"
- Two exceptions:
 - [Tantithamthavorn 2016](Grid Search)
 - 43 HPC nodes with 24 hyperthreads
 - 65% learners: 30 minutes
 - 35% learners: over 30 minutes
 - [Lessmann 2008](Grid Search)
 - tune a small set of their learners
 - no runtime reports

NC STATE UNIVERSITY

Why ignored?

Cause they are so well explored all already... right?

CPU intensive!

Why ignored?

- Arcuri et al reported their tuning may require weeks, or more, of CPU time[Arcuri' 2011].
- Wang et al. needed 15 years of CPU to explore 9.3 million candidate configurations for software clone detectors[Wang' 2013].

CPU intensive!

NC STATE UNIVERSITY

Why ignored?

CPU intensive!

NC STATE UNIVERSITY

Open issues (for SE data science)

Questions	Answers
Does tuning improve learners' performance?	
Does tuning change learners' rank?	
Is tuning very slow?	
Should data miner be used "off-the-shelf"?	

We'll get back to these... much later in the talk

Roadmap

- Expectation management
- Motivation
- Background
- Progress Report
- Future Work & Challenges

How to Tune?

- Mathematical Optimization
- Grid Search
- Evolutionary Algorithms

Mathematical Optimization

$$min \quad f_0(X) \\ s.t. \quad f_i(X) \le b_i, i = 1, ..., m.$$

Objective

Constraint functions

- Based on the property of objective function and constraint function:
 - linear programing
 - non-linear programing
 - o
- If differentiable, methods, like gradient descent, are to solve such problem
 - Linear regression and logistic regression
 - SVM, regularization parameter C[Cherkassky'2004]
- Note used much in SE because software not simple differential functions:
 - Also, issue of computational complexity of SE problems[Harman 2001]

Grid Search

- Divide all C configuration options into N values
- Evaluate N^C different combinations
 - \circ Slow
 - Miss important optimization

9 parameter into 7 values 7^9= 40 million evaluations!

Evolutionary Algorithms E.g. GA:

- 1. Population \leftarrow initializePopulation(N)
- 2. evaluatePopulation(Population)
- 3. While not stopCondition()

 - c. evaluateFitness(offspring)
 - d. Replace least-fit population with new offspring
- 4. Return (Population)

E.g.: MOEA/D, NSGA-III, DE

Other approaches: particle swarm, ant-colony, bee colony, etc.

Future work!

Differential Evolution

- 1. Population \leftarrow InitializePopulation(N)
- 2. evaluatePopulation(Population)
- 3. While not StopCondition()
 - a. For parent in Population

 - ii. Score evaluateFitness(Offspring)
 - iii. If Score > parentScore
 - 1. Replace(parent, Offspring)
- 4. Return (Population)

• Pick three (X, Y, Z) from the population

For i in len(parent)

o parent[i] = New[i]

Why DE?

- * Competitive with particle swarm optimization and other GAs [Vesterstrom 2004]
- * Easy to implement

What is software defect prediction?

Inputs = static code measures

amc	average method complexity	e.g. number of JAVA byte codes
avg_cc	average McCabe	average McCabe's cyclomatic complexity seen in class
ca	afferent couplings	how many other classes use the specific class.
cam	cohesion amongst classes	summation of number of different types of method parameters in every method divided by a multiplication of number of different method parameter types in whole class and number of methods.
cbm	coupling between methods	total number of new/redefined methods to which all the inherited methods are coupled
cbo	coupling between objects	increased when the methods of one class access services of another.
ce	efferent couplings	how many other classes is used by the specific class.
dam	data access	ratio of the number of private (protected) attributes to the total number of attributes
dit	depth of inheritance tree	
ic	inheritance coupling	number of parent classes to which a given class is coupled (includes counts of methods and variables inherited)
lcom	lack of cohesion in methods	number of pairs of methods that do not share a reference to an instance variable.
locm3	another lack of cohesion measure if m, a are the number of methods, attributes in a class number and $\mu(a)$ is the number of methods accession	
		then $lcom3 = ((\frac{1}{a}\sum_{j}^{a}\mu(a_{j})) - m)/(1-m).$
loc	lines of code	21 1000000000 00 00 100 10 00 W 1000
max_cc	maximum McCabe	maximum McCabe's cyclomatic complexity seen in class
mfa	functional abstraction	number of methods inherited by a class plus number of methods accessible by member methods of the class
moa	aggregation	count of the number of data declarations (class fields) whose types are user defined classes
noc	number of children	
npm	number of public methods	
rfc	response for a class	number of methods invoked in response to a message to the object.
wmc	weighted methods per class	
defect	defect	Boolean: where defects found in post-release bug-tracking systems.

Output = defect predicted?

Defect Prediction

Easy to use:

• Static code attributes can be automatically collected[Nagappan 2005]

Widely used:

• Defect prediction models have been reported at Google[Lewis 2013]

Useful:

• Competitive with supposedly more sophisticated technology [Rahman14]

Roadmap

- Expectation management
- Motivation
- · Background
- Progress Report
- Future Work & Challenges

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Experiments

Tuning algorithm: Differential Evolution

457 citations since 2008

Defect Learners: From [Lessmann 2008]

- CART
- Random Forests
- WHERE-based learner[Menzies 2013]

WHERE-based learner: fastmap[Floutsos 1995] to cluster data + decision tree

Parameters in Defect Learners

Learner Name Parameters Default		Tuning Range	Description			
	threshold	0.5	[0.01,1]	The value to determine defective or not .	scikit	
	infoPrune	0.33	[0.01,1]	The percentage of features to consider for the best split to build its final decision tree.	lea	
	min_sample_split	4	[1,10]	The minimum number of samples required to split an internal node of its final decision tree.		
Where-based	min_Size	0.5	[0.01,1]	Finds min_samples_leaf in the initial clustering tree using $n_samples^{min_size}$.		
Learner	wriggle	0.2	[0.01, 1]	The threshold to determine which branch in the initial clustering tree to be pruned		
	depthMin	2	[1,6]	The minimum depth of the initial clustering tree below which no pruning for the clustering tree.		
	depthMax	10	[1,20]	The maximum depth of the initial clustering tree.		
	wherePrune	False	T/F	Whether or not to prune the initial clustering tree.		
	treePrune	True	T/F	Whether or not to prune the final decision tree.		
	threshold	0.5	[0,1]	The value to determine defective or not.		
	max_feature	None	[0.01,1]	The number of features to consider when looking for the best split.		
CART	min_sample_split	2	[2,20]	The minimum number of samples required to split an internal node.		
	min_samples_leaf	1	[1,20]	The minimum number of samples required to be at a leaf node.		
	max_depth	None	[1, 50]	The maximum depth of the tree.		
	threshold	0.5	[0.01,1]	The value to determine defective or not.		
Pandom	max_feature	None	[0.01,1]	The number of features to consider when looking for the best split.		
Forests	max_leaf_nodes	None	[1,50]	Grow trees with max_leaf_nodes in best-first fashion.		
Forests	min_sample_split	2	[2,20]	The minimum number of samples required to split an internal node.		
	min_samples_leaf	1	[1,20]	The minimum number of samples required to be at a leaf node.		
	n_estimators	100	[50,150]	The number of trees in the forest.		

Data Sets

10 open source java projects from PROMISE repo[Menzies 2016]:

• ant , camel, ivy, jedit, log4j, lucene.

• poi, synapse, velocity, xerces.

amc	average method complexity	e.g. number of JAVA byte codes
avg_cc	average McCabe	average McCabe's cyclomatic complexity seen in class
ca	afferent couplings	how many other classes use the specific class.
cam	cohesion amongst classes	summation of number of different types of method parameters in every method divided by a multiplication of number of different method parameter types in whole class and number of methods.
cbm	coupling between methods	total number of new/redefined methods to which all the inherited methods are coupled
cbo	coupling between objects	increased when the methods of one class access services of another.
ce	efferent couplings	how many other classes is used by the specific class.
dam	data access	ratio of the number of private (protected) attributes to the total number of attributes
dit	depth of inheritance tree	
ic	inheritance coupling	number of parent classes to which a given class is coupled (includes counts of methods and variables inherited)
lcom	lack of cohesion in methods	number of pairs of methods that do not share a reference to an instance variable.
locm3	another lack of cohesion measure	if m, a are the number of methods, attributes in a class number and $\mu(a)$ is the number of methods accessing an attribute,
		then $lcom3 = ((\frac{1}{a}\sum_{j}^{a}\mu(a_{j})) - m)/(1 - m).$
loc	lines of code	
max_cc	maximum McCabe	maximum McCabe's cyclomatic complexity seen in class
mfa	functional abstraction	number of methods inherited by a class plus number of methods accessible by member methods of the class
moa	aggregation	count of the number of data declarations (class fields) whose types are user defined classes
noc	number of children	
npm	number of public methods	
rfc	response for a class	number of methods invoked in response to a message to the object.
wmc	weighted methods per class	
defect	defect	Boolean: where defects found in post-release bug-tracking systems.

How to Design Experiment

Cross-Validation

How to Design Experiment

Cross-Validation

Slow (e.g.leave-one-out)

How to Design Experiment

Cross-Validation

- Slow (e.g.leave-one-out)
- Mix up older data and newer data

Data from the past might be used to test on future data

• Incremental learning approach

• Incremental learning approach

	ant 1.3	ant 1.4	ant 1.5	ant 1.6	ant 1.7	
Tuning EXP1	Training data	Tuning data	Testing data			
Default EXP1	fault EXP1 Training data					

Incremental learning approach

Incremental learning approach

• Incremental learning approach

Tuning Goals

		Predicted results			
	Total	Predicted positive	Predicted negative		
Actual results	Actual positive	True positive(D)	False negative(B)		
	Actual negative	False positive(C)	True negative(A)		

Pd = D/(B+D) Pf = C/(A+C)

Precision = D/(D+C)

F-measure = 2* pd*precision/(pd+precision)

Tuning Goals

		Predicted results			
	Total	Predicted positive	Predicted negative		
Actual results	Actual positive	True positive(D)	False negative(B)		
	Actual negative	False positive(C)	True negative(A)		

Pd = D/(B+D)Pf = C/(A+C)

Precision = D/(D+C)

F-measure = 2* pd*precision/(pd+precision)

Experiment

Research Questions

Questions	Answers
Does tuning improve learners' performance?	
Does tuning change learners' rank?	
Is tuning very slow?	
Should data miner be used "off-the-shelf"?	

Learner	Precision	F-measure
WHERE	13/17	15/17
CART	15/17	13/17
Random Forest	12/17	10/17

Research Questions

Questions	Answers
Does tuning improve learners' performance?	
Does tuning change learners' rank?	
Is tuning very slow?	
Should data miner be used "off-the-shelf"?	

Research Questions

Questions	Answers
Does tuning improve learners' performance?	Yes
Does tuning change learners' rank?	
Is tuning very slow?	
Should data miner be used "off-the-shelf"?	

	WHERE		CA	ART	Random Forest		
Data set	default	Tuned	default	Tuned	default	Tuned	
antV0	0	35	15	60	21	44	
antV1	0	60	54	56	67	50	
antV2	45	55	42	52	56	67	
camelV0	20			50	28	79	
camelV1	27	28	38	28	34	27	
ivy	25	21	21	26	23	20	
jeditV0	34	37	56	78	52	60	
jeditV1	30	42	32	64	32	37	
jeditV2	4	22	6	17	4	6	
log4j		91	95		95	100	
lucene	61	75	67	70	63	77	
poiV0	70		65	71	67	69	
poiV1	74	76	72	90	78	100	
	61	50	50	100	60	60	
velocity	34	44	39	44	40	42	
xercesV0	14	17	17	14	28	14	
xercesV1		54	72	100	78	27	

	WHERE		CA	ART	Random Forest	
Data set	default	Tuned	default	Tuned	default	Tuned
antV0	0	35	15	60	21	44
antV1	0	60	54	56	67	50
Tost Data ^{1V2}	45	55	42	52	56	67
Test Data IVO	20		30	50	28	79
camelV1	27	28	38	28	34	27
ivy	25	21	21	26	23	20
jeditV0	34	37	56	78	52	60
jeditV1	30	42	32	64	32	37
jeditV2	4	22	6	17	4	6
log4j		91	95		95	100
lucene	61	75	67	70	63	77
poiV0	70		65	71	67	69
poiV1	74	76	72	90	78	100
	61	50	50	100	60	60
velocity	34	44	39	44	40	42
xercesV0	14	17	17	14	28	14
xercesV1		54	72	100	78	27

Does Tuning Change Learners' Rank?

	WH	ERE	CA	ART	Randor	m Forest	
Data set	default	Tuned	default	Tuned	default	Tuned	
antV0	0	35	15	60≪	21	44	Best result in bold
antV1	0	60	54	56	67	50	
Test Data ^{IV2}	45	55	42	52	56	67	
I ESI Dala IVO	20	30	30	50	28	79	
camelV1	27	28	38	28	34	27	
ivy	25	21	21	26	23	20	
jeditV0	34	37	56	78	52	60	
jeditV1	30	42	32	64	32	37	
jeditV2	4	22	6	17	4	6	
log4j		91	95		95	100	
lucene	61	75	67	70	63	77	
poiV0	70	70	65	71	67	69	
poiV1	74	76	72	90		100	
	61	50	50	100	60	60	
velocity	34	44	39	44	40	42	
xercesV0	14	17	17	14	28	14	
xercesV1		54	72	100	78	27	

		WHERE CART		ART	Randor	n Forest		
,	Data set	default	Tuned	default	Tuned	default	Tuned	
	antV0	0	35	15	60	21	44	Best result in bold
	antV1	0	60	54	56	67	50	
	tV2	45	55	42	52	56	67	
Test	IV0	20	30	30	50	28	79	
	camelV1	27	28	38	28	34	27	Deputte of turing representation
	ivy	25	21	21	26	23	20	Results of tuning parameters
	jeditV0	34	37	56	78	52	60	
	jeditV1	30	42	32	64	32	37	
	jeditV2	4	22	6	17	4	6	
	log4j	96	91	95	98	95	100	
	lucene	61	75	67	70	63	77	
	poiV0	70	70	65	71	67	69	
	poiV1	74	76	72	90	78	100	
	synapse	61	50	50	100	60	60	
	velocity	34	44	39	44	40	42	
	xercesV0	14	17	17	14	28	14	
	xercesV1	86	54	72	100	78	27	

	WHERE		CA	ART	Random Forest	
Data set	default	Tuned	default	Tuned	default	Tuned
antV0	0	35	15	60	21	44
antV1	0	60	54	56	67	50
antV2	45	55	42	52	56	67
camelV0	20	30	30	50	28	79
camelV1	27	28	38	28	34	27
ivy	25	21	21	26	23	20
jeditV0	34	37	56	78	52	60
jeditV1	30	42	32	64	32	37
jeditV2	4	22	6	17	4	6
log4j	96	91	95	98	95	100
lucene	61	75	67	70	63	77
poiV0	70	70	65	71	67	69
poiV1	74	76	72	90	78	100
synapse	61	50	50	100	60	60
velocity	34	44	39	44	40	42
xercesV0	14	17	17	14	28	14
xercesV1	86	54	72	100	78	27

 Random Forests is better than CART for defect prediction[Lessmann 2008].

	WH	ERE	CA	ART	Random Forest	
Data set	default	Tuned	default	Tuned	default	Tuned
antV0	0	35	15	60	21	44
antV1	0	60	54	56	67	50
antV2	45	55	42	52	56	67
camelV0	20	30	30	50	28	79
camelV1	27	28	38	28	34	27
ivy	25	21	21	26	23	20
jeditV0	34	37	56	78	52	60
jeditV1	30	42	32	64	32	37
jeditV2	4	22	6	17	4	6
log4j	96	91	95	98	95	100
lucene	61	75	67	70	63	77
poiV0	70	70	65	71	67	69
poiV1	74	76	72	90	78	100
synapse	61	50	50	100	60	60
velocity	34	44	39	44	40	42
xercesV0	14	17	17	14	28	14
xercesV1	86	54	72	100	78	27

 Random Forests is better than CART for defect prediction[Lessmann 2008].

Yes RF is better than CART in 12/17 data sets

	WH WH	ERE	CA	ART	Rando	m Forest	
Data set	default	Tuned	default	Tuned	default	Tuned	- Develope Foresta is bottor there CADT for defect
antV0	0	35	15	60	21	44	Random Forests is better than CART for defect
antV1	0	60	54	56	67	50	prediction[Lessmann 2008].
antV2	45	55	42	52	56	67	
camelV0	20	30	30	50	28	79	
camelV1	27	28	38	28	34	27	
ivy	25	21	21	26	23	20	
jeditV0	34	37	56	78	52	60	Ves RF is better than CART in 12/17 data sets
jeditV1	30	42	32	64	32	37	
jeditV2	4	22	6	17	4	6	
log4j	96	91	95	98	95	100	After Tuning
lucene	61	75	67	70	63	77	
poiV0	70	70	65	71	67	69	
poiV1	74	76	72	90	78	100	
synapse	61	50	50	100	60	60	RF is better than CART in 5/17 data sets
velocity	34	44	39	44	40	42	
xercesV0	14	17	17	14	28	14	
xercesV1	86	54	72	100	78	27	

	WH	ERE	CA	RT	Random Forest	
Data set	default	Tuned	default	Tuned	default	Tuned
antV0	0	20	20	40	28	38
antV1	0	38	37	49	38	49
antV2	47	50	45	49	57	56
camelV0	31	28	39	28	40	30
camelV1	34	34	38	32	42	33
ivy	39	34	28	40	35	33
jeditV0	45	47	56	57	63	59
jeditV1	43	44	44	47	46	48
jeditV2	8	11	10	10	8	9
log4j	47	50	53	37	60	47
lucene	73	73	65	72	70	76
poiV0	50	74	31	64	45	77
poiV1	75	78	68	69	77	78
synapse	49	56	43	60	52	53
velocity	51	53	53	51	56	51
xercesV0	19	22	19	26	34	21
xercesV1	32	70	34	35	42	71

Random Forests is better than CART for defect prediction[Lessmann 2008].

Yes RF is better than CART in 16/17 data sets

After Tuning

NO! RF is better than CART in **9/17** data sets

Table 5: F-measure results (best results shown in bold).

SAME pattern found in F-measure results

Research Questions

Questions	Answers
Does tuning improve learners' performance?	Yes
Does tuning change learners' rank?	
Is tuning very slow?	
Should data miner be used "off-the-shelf"?	

Research Questions

Questions	Answers
Does tuning improve learners' performance?	Yes
Does tuning change learners' rank?	Yes
Is tuning very slow?	
Should data miner be used "off-the-shelf"?	

Is Tuning Impractically Slow?

Runtimes in see

Datasets	Tuned_Where	Naive_Where	Tuned_CART	Naive_CART	Tuned RanFst	Naive_RanFst	
antV0	50/95.47	1.65	60 / 5.08	0.08	60/9.78	0.20	
antV1	60 / 224.67	3.03	50 / 6.52	0.12	60 / 14.13	0.25	
antV2	70 / 644.99	8.24	50/9.00	0.24	60 / 16.75	0.44	
camelV0	70 / 690.62	7.93	70/12.68	0.24	110/28.49	0.34	
camelV1	60 / 1596.77	23.56	60/17.13	0.27	70/33.96	0.77	
ivy	60 / 66.69	0.97	60 / 4.26	0.07	60 / 8.89	0.19	
jeditV0	80/459.30	5.33	80/8.69	0.11	90/18.40	0.32	
jeditV1	60/421.56	6.59	80/9.05	0.12	80 / 17.93	0.36	
jeditV2	90/595.56	6.88	60 / 7.90	0.14	110/27.34	0.38	
log4j	50 / 76.09	1.33	50/2.60	0.06	80/9.69	0.15	
lucene	80/236.45	2.60	70 / 6.07	0.10	60/9.77	0.25	
poiV0	60 / 263.12	3.92	70/7.42	0.09	130/25.86	0.28	
poiV1	50/398.33	6.94	70/9.31	0.13	50 / 12.67	0.29	
synapse	70 / 144.09	1.85	50/3.88	0.07	50/8.13	0.19	
velocity	60 / 184.10	2.68	50 / 4.27	0.07	100/15.18	0.21	
xercesV0	60 / 136.87	1.98	80/9.17	0.10	70 / 14.17	0.22	
xercesV1	80/1173.92	12.78	60 / 10.47	0.16	50/18.27	0.40	

Evaluations/Runtimes for tuned and default learners with DE(in sec), optimizing for F

Is Tuning Impractically Slow? # of evaluations							
Datasets	Tuned Where	Naive Where	Tuned CART	Naive CART	Tuned RanFst	Naive RanFst	
antV0	50/95.47	1.65	60 / 5.08	0.08	60/9.78	0.20	
antV1	60 / 224.67	3.03	50 / 6.52	0.12	60 / 14.13	0.25	
antV2	70/644.99	8.24	50/9.00	0.24	60 / 16.75	0.44	
camelV0	70 / 690.62	7.93	70 / 12.68	0.24	110/28.49	0.34	
camelV1	60 / 1596.77	23.56	60/17.13	0.27	70/33.96	0.77	
ivy	60 / 66.69	0.97	60 / 4.26	0.07	60 / 8.89	0.19	
jeditV0	80/459.30	5.33	80/8.69	0.11	90/18.40	0.32	
jeditV1	60/421.56	6.59	80/9.05	0.12	80 / 17.93	0.36	
jeditV2	90 / 595.56	6.88	60 / 7.90	0.14	110/27.34	0.38	
log4j	50 / 76.09	1.33	50/2.60	0.06	80/9.69	0.15	
lucene	80 / 236.45	2.60	70 / 6.07	0.10	60/9.77	0.25	
poiV0	60 / 263.12	3.92	70 / 7.42	0.09	130/25.86	0.28	
poiV1	50/398.33	6.94	70/9.31	0.13	50 / 12.67	0.29	
synapse	70 / 144.09	1.85	50/3.88	0.07	50/8.13	0.19	
velocity	60 / 184.10	2.68	50/4.27	0.07	100/15.18	0.21	
xercesV0	60 / 136.87	1.98	80/9.17	0.10	70 / 14.17	0.22	
vorcos V1	20/1172.02	10.70	60/10/7	0.16	50/19.27	0.40	

Evaluations/Runtimes for tuned and default learners with DE(in sec), optimizing for F 60

Is Tuning Impractically Slow?

	Datasets	Tuned_Where	Naive_Where	Tuned_CART	Naive_CART	Tuned_RanFst	Naive_RanFst
	antV0	50/95.47	1.65	60 / 5.08	0.08	60/9.78	0.20
	antV1	60 / 224.67	3.03	50 / 6.52	0.12	60 / 14.13	0.25
	antV2	70 / 644.99	8.24	50 / 9.00	0.24	60 / 16.75	0.44
	camelV0	70 / 690.62	7.93	70 / 12.68	0.24	110/28.49	0.34
	camelV1	60 / 1596.77	23.56	60 / 17.13	0.27	70 / 33.96	0.77
Evaluations:	ivy	60 / 66.69	0.97	60 / 4.26	0.07	60 / 8.89	0.19
50~100	jeditV0	80 / 459.30	5.33	80 / 8.69	0.11	90 / 18.40	0.32
00 100	jeditV1	60 / 421.56	6.59	80 / 9.05	0.12	80 / 17.93	0.36
	jeditV2	90 / 595.56	6.88	60 / 7.90	0.14	110/27.34	0.38
	log4j	50 / 76.09	1.33	50 / 2.60	0.06	80 / 9.69	0.15
	lucene	80 / 236.45	2.60	70 / 6.07	0.10	60 / 9.77	0.25
	poiV0	60 / 263.12	3.92	70 / 7.42	0.09	130 / 25.86	0.28
	poiV1	50 / 398.33	6.94	70/9.31	0.13	50 / 12.67	0.29
	synapse	70 / 144.09	1.85	50 / 3.88	0.07	50/8.13	0.19
	velocity	60 / 184.10	2.68	50 / 4.27	0.07	100 / 15.18	0.21
	xercesV0	60 / 136.87	1.98	80/9.17	0.10	70 / 14.17	0.22
	xercesV1	80 / 1173.92	12.78	60 / 10.47	0.16	50 / 18.27	0.40

Evaluations/Runtimes for tuned and default learners with DE(in sec), optimizing for F 61

Is Tuning Impractically Slow?

Runtimes for tuned and default learners with DE and GridSearch(in sec), optimizing for F & precision

Research Questions

Questions	Answers
Does tuning improve learners' performance?	Yes
Does tuning change learners' rank?	Yes
Is tuning very slow?	
Should data miner be used "off-the-shelf"?	

Research Questions

Questions	Answers
Does tuning improve learners' performance?	Yes
Does tuning change learners' rank?	Yes
Is tuning very slow?	No!
Should data miner be used "off-the-shelf"?	

Learner Name	Parameters	Default	Tuning Range	Description
	threshold 0.5		[0.01,1]	The value to determine defective or not .
	infoPrune	0.33	[0.01,1]	The percentage of features to consider for the best split to build its final decision tree.
	min_sample_split	4	[1,10]	The minimum number of samples required to split an internal node of its final decision tree.
Where-based	min_Size	0.5	[0.01,1]	Finds min_samples_leaf in the initial clustering tree using n_samples ^{min_Size} .
Learner	wriggle	0.2	[0.01, 1]	The threshold to determine which branch in the initial clustering tree to be pruned
	depthMin	2	[1,6]	The minimum depth of the initial clustering tree below which no pruning for the clustering tree.
	depthMax	10	[1,20]	The maximum depth of the initial clustering tree.
	wherePrune	wherePrune False T/F		Whether or not to prune the initial clustering tree.
	treePrune	True	T/F	Whether or not to prune the final decision tree.

Select four representatives

- threshold: 0.5
- infoPrune: 0.33
- min_Size : 0.5
- wriggle: 0.2

Default settings

- threshold: 0.5
- infoPrune: 0.33
- min_Size : 0.5
- wriggle: 0.2

Default settings

- threshold: 0.5
- infoPrune: 0.33
- min Size : 0.5
- wriggle: 0.2

- Tunings learned were different
 - in different data sets
 - for different goals.
- Tunings learned by DE were often very different to the default.
 - threshold: 0.5
 - min_Size : 0.5
 - infoPrune: 0.33
 - wriggle: 0.2

- Tunings learned were different
 - in different data sets
 - for different goals.
- Tunings learned by DE were often very different to the default.
 - threshold: 0.5
 - min_Size : 0.5
 - o infoPrune: 0.33
 - wriggle: 0.2

- Tunings learned were different
 - in different data sets
 - for different goals.
- Tunings learned by DE were often very different to the default.
 - threshold: 0.5
 - min_Size : 0.5
 - infoPrune: 0.33
 - wriggle: 0.2

- Tunings learned were different
 - in different data sets
 - for different goals.
- Tunings learned by DE were often very different to the default.
 - threshold: 0.5
 - min_Size : 0.5
 - infoPrune: 0.33
 - wriggle: 0.2

Should We Use "off-the-shelf" Tunings?

- Tunings learned were different
 - in different data sets
 - for different goals.
- Tunings learned by DE were often very different to the default.
 - threshold: 0.5
 - min_Size : 0.5
 - infoPrune: 0.33
 - wriggle: 0.2

Research Questions

Questions	Answers
Does tuning improve learners' performance?	Yes
Does tuning change learners' rank?	Yes
Is tuning very slow?	No!
Should data miner be used "off-the-shelf"?	

Research Questions

Questions	Answers
Does tuning improve learners' performance?	Yes
Does tuning change learners' rank?	Yes
Is tuning very slow?	No!
Should data miner be used "off-the-shelf"?	No!

Review

Improvements of tuned learners over untuned learners.

NC STATE UNIVERSITY

Review

78

Review

Review

Roadmap

- Expectation management
- Motivation
- · Background
- Progress Report
- Future Work & Challenges

Harder and Harder Problems

NC STATE UNIVERSITY

- What to tune?
 - Data Mining algorithms
 - Feature processing
 - Tfidf

■ L2norm

.

- Hashing trick
- Work with Zhe, Rahul, Di, etc....LN people!

Bug report:[Wang' 2008, Anvik' 2006, Guo' 2010] Email:[Bacchelli 2011, Dredze 2006] Source code:[Tan' 2012, Yang' 2012, Shridihara'2011]

Deep Learning

- Code suggestion[White 2015]
- Buggy files localization[Lam 2015]
- What to tune?
 - number of hidden layer,
 - learning rate,
 - amount of regularization
 - o ...
- Work with Prof.Tien Nguyen (ISU)

Improve tuning performance

• Work with JC Nam

- Cluster data to transfer knowledge
- Improve heterogeneous defect prediction.

Relevancy-based optimization?

- Cluster tuning/training data
- Select clusters that are nearest neighbors to testing as tuning/training data.
- Apply those tunings in testing.

Questions	Answers
Does tuning improve learners' performance?	Yes
Does tuning change learners' rank?	Yes
Is tuning very slow?	No!
Should data miner be used "off-the-shelf"?	Nol

Reference

- 1. [Snoek' 2012]Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams. "Practical bayesian optimization of machine learning algorithms." *Advances in neural information processing systems*. 2012.
- 2. [Bergstra'2012]Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." *The Journal of Machine Learning Research* 13.1 (2012): 281-305.
- 3. [Cherkassky'2004]Cherkassky, Vladimir, and Yunqian Ma. "Practical selection of SVM parameters and noise estimation for SVM regression." *Neural networks* 17.1 (2004): 113-126.
- 4. [Panichella'2013]Panichella, Annibale, et al. "How to effectively use topic models for software engineering tasks? an approach based on genetic algorithms." *Proceedings of the 2013 International Conference on Software Engineering*. IEEE Press, 2013.
- 5. [Arcuri' 2011]Arcuri, Andrea, and Gordon Fraser. "On parameter tuning in search based software engineering." *Search Based Software Engineering*. Springer Berlin Heidelberg, 2011. 33-47.
- 6. [Corazza'2010]Corazza, Anna, et al. "How effective is tabu search to configure support vector regression for effort estimation?." *Proceedings of the 6th international conference on predictive models in software engineering*. ACM, 2010.
- 7. [Wang' 2013]Wang, Tiantian, et al. "Searching for better configurations: a rigorous approach to clone evaluation." *Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering*. ACM, 2013.
- 8. [Lessmann '2008]Lessmann, Stefan, et al. "Benchmarking classification models for software defect prediction: A proposed framework and novel findings." *Software Engineering, IEEE Transactions on* 34.4 (2008): 485-496.
- 9. [Tantithamthavorn '2016]Tantithamthavorn, Chakkrit, et al. "Automated Parameter Optimization of Classification Techniques for Defect Prediction Models." *The International Conference on Software Engineering (ICSE), page To appear.* 2016.
- 10. [White 2015]M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk, "Toward deep learning software repositories," in Mining Software Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on, pp. 334–345,IEEE, 2015.
- [Lam 2015]A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, "Combining deep learning with information retrieval to localize buggy files for bug reports (n)," in Automated Software Engineering (ASE), 2015 30th IEEE/ACM International Conference on, pp. 476–481, IEEE, 2015.

Reference

- 12. [Rahman 2013]Rahman, Foyzur, and Premkumar Devanbu. "How, and why, process metrics are better." *Proceedings of the 2013 International Conference on Software Engineering*. IEEE Press, 2013.
- 13. [Moser 2008]Moser, Raimund, Witold Pedrycz, and Giancarlo Succi. "A comparative analysis of the efficiency of change metrics and static code attributes for defect prediction." *Software Engineering, 2008. ICSE'08. ACM/IEEE 30th International Conference on.* IEEE, 2008.
- 14. [Bell 2013]Bell, Robert M., Thomas J. Ostrand, and Elaine J. Weyuker. "The limited impact of individual developer data on software defect prediction." *Empirical Software Engineering* 18.3 (2013): 478-505.
- 15. [Menzies 2013]Menzies, Tim, et al. "Local versus global lessons for defect prediction and effort estimation." *Software Engineering, IEEE Transactions on* 39.6 (2013): 822-834.
- 16. [Menzies 2016]Menzies, T., Krishna, R., Pryor, D. (2016). The Promise Repository of Empirical Software Engineering Data; http://openscience.us/repo. North Carolina State University, Department of Computer Science
- 17. [Nagappan 2005]Nagappan, Nachiappan, and Thomas Ball. "Static analysis tools as early indicators of pre-release defect density." *Proceedings of the 27th international conference on Software engineering*. ACM, 2005.
- 18. [Lewis 2013]Lewis, Chris, et al. "Does bug prediction support human developers? findings from a google case study." *Proceedings of the 2013 International Conference on Software Engineering*. IEEE Press, 2013.
- 19. [Menzies 2007]Menzies, Tim, Jeremy Greenwald, and Art Frank. "Data mining static code attributes to learn defect predictors." Software Engineering, IEEE Transactions on 33.1 (2007): 2-13.
- 20. [Harman 2001]Harman, Mark, and Bryan F. Jones. "Search-based software engineering."*Information and software Technology* 43.14 (2001): 833-839.
- 21. [Wang 2008]Wang, Xiaoyin, et al. "An approach to detecting duplicate bug reports using natural language and execution information." *Proceedings of the 30th international conference on Software engineering*. ACM, 2008.
- 22. [Anvik 2006]Anvik, John, Lyndon Hiew, and Gail C. Murphy. "Who should fix this bug?." *Proceedings of the 28th international conference on Software engineering*. ACM, 2006.
- 23. [Guo 2010]Guo, Philip J., et al. "Characterizing and predicting which bugs get fixed: an empirical study of Microsoft Windows." *Software Engineering, 2010 ACM/IEEE 32nd International Conference on*. Vol. 1. IEEE, 2010.

Reference

- 24. [Tan 2012]Tan, Shin Hwei, et al. "@ tcomment: Testing javadoc comments to detect comment-code inconsistencies." Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Conference on. IEEE, 2012.
- 25. [Yang 2012]Yang, Jinqiu, and Lin Tan. "Inferring semantically related words from software context." *Proceedings of the 9th IEEE Working Conference on Mining Software Repositories*. IEEE Press, 2012.
- 26. [Sridhara 2011]Sridhara, Giriprasad, Lori Pollock, and K. Vijay-Shanker. "Automatically detecting and describing high level actions within methods." *Software Engineering (ICSE), 2011 33rd International Conference on*. IEEE, 2011.
- 27. [Bacchelli 2011]Bacchelli, Alberto, Michele Lanza, and Romain Robbes. "Linking e-mails and source code artifacts." *Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1*. ACM, 2010.
- 28. [Drehze 2006]Dredze, Mark, Tessa Lau, and Nicholas Kushmerick. "Automatically classifying emails into activities." *Proceedings of the 11th international conference on Intelligent user interfaces*. ACM, 2006.
- 29. [Vesterstrom 2004]Vesterstrøm, Jakob, and Rene Thomsen. "A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems." *Evolutionary Computation, 2004. CEC2004. Congress on.* Vol. 2. IEEE, 2004.
- 30. [Faloutsos 1995]Faloutsos, Christos, and King-Ip Lin. *FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets*. Vol. 24. No. 2. ACM, 1995.