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What is Parameter Tuning?
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● Data mining algorithms usually have some 
“magic parameters’’ to control their behavior to 
explore data.

○ Random Forests: 

■ Number of trees

■ Depth of the tree

■ …...

● When tuning a data miner, data miner will use 
different heuristics and generate different 
models.

Training 
Data 

Testing
Data

# of trees = 50

pd=0.7
Random Forests
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● Data mining algorithms usually have some 
“magic parameters’’ to control their behavior to 
explore data.

○ Random Forests: 

■ Number of trees

■ Depth of the tree

■ …...

● When tuning a data miner, data miner will use 
different heuristics and generate different 
models.

Training 
Data 

Testing
Data

# of trees = 50

# of trees = 100

pd=0.7

pd=0.9

Random Forests



Note: outside of SE data science,
other communities endorse tuning

● Other communities
○ Test error improved from 11% to 9.5% on 

image classification [Snoek’ 2012]

○ Random search is able to find good 
hyper-parameters within a small fraction of 
the computation time [Bergstra ’2012]

○ Analytic parameter selection yields good 
generalization performance of SVM 
[Cherkassky ’2004]

9
CIFAR-10 *

* https://www.cs.toronto.edu/~kriz/cifar.html



But for “software defect prediction”….
… mostly ignored
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● “Software defect prediction”
○ Guessing where the bugs are, using models 

built via data mining
○ (see slide20 for more details)

● Recent lit review
○ Only 2/50 acknowledged impact of tunings.
○ Almost all using learners “off-the-shelf”

● Two exceptions:
○ [Tantithamthavorn 2016](Grid Search)

■ 43 HPC nodes with 24 hyperthreads
■ 65% learners: 30 minutes
■ 35% learners: over 30 minutes

○ [Lessmann 2008](Grid Search)
■ tune a small set of their learners
■ no runtime reports
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Why ignored?

Cause they are so well 
explored all already… right? CPU intensive!
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● Arcuri et al reported their tuning may require 
weeks, or more, of CPU time[Arcuri’ 2011].

● Wang et al. needed 15 years of CPU to 
explore 9.3 million candidate configurations for 
software clone detectors[Wang’ 2013].

CPU intensive!

Why ignored?
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Why ignored?

CPU intensive!
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Open issues
(for SE data science)

We’ll get back to these… much later in the talk
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How to Tune?

• Mathematical Optimization
• Grid Search
• Evolutionary Algorithms
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● Based on the property of objective function and constraint function:
○ linear programing
○ non-linear programing
○ ….

● If differentiable, methods, like gradient descent, are to solve such problem
○ Linear regression and logistic regression
○ SVM, regularization parameter C[Cherkassky’2004]

● Note used much in SE because software not  simple differential functions:

○ Also, issue of computational complexity of SE problems[Harman 2001]

Objective

Constraint functions

Mathematical Optimization



Grid Search
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● Divide all C configuration options into N values

● Evaluate N^C different combinations

○ Slow

○ Miss important optimization

 9 parameter into 7 values
7^9= 40 million evaluations!
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1. Population ⬅ initializePopulation(N) 
2. evaluatePopulation(Population)
3. While not stopCondition()

a. Parents ⬅ selectParents(Population)
b. Offspring ⬅ crossOverMutate(Parents)
c. evaluateFitness(offspring)
d. Replace least-fit population with new offspring

4. Return (Population)

Evolutionary Algorithms
E.g. GA:

E.g.:  MOEA/D, NSGA-III, DE

Other approaches: 
particle swarm, ant-colony, bee colony, etc.

Future work!
 



Differential Evolution

20

● Pick three (X, Y, Z) from the population
● For i in len(parent)
● New[i] = X[i]+ f * (Y[i]-Z[i])   (e.g., f=0.75)
● If random < CR:(CR=0.3)

○ parent[i] = New[i]

1. Population ⬅  InitializePopulation(N)

2. evaluatePopulation(Population)

3. While not StopCondition()

a. For parent in Population

i. Offspring ⬅ CrossOverMutate(parent)

ii. Score ⬅ evaluateFitness(Offspring)

iii. If Score > parentScore

1. Replace(parent, Offspring)

4. Return (Population)

Why DE?

* Competitive with particle swarm optimization 
and other GAs [Vesterstrom 2004]

* Easy to implement



What is software defect prediction?

21Output = defect predicted?

Inputs = static code measures
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Easy to use: 
● Static code attributes can be automatically collected[Nagappan 2005]

Widely used: 
● Defect prediction models have been reported at Google[Lewis 2013]

Useful: 
● Competitive with supposedly more sophisticated technology [Rahman14]

Defect Prediction



Roadmap

23

• Expectation management
• Motivation
• Background
• Progress Report
• Future Work & Challenges



W. Fu,  T. Menzies,  X. Shen “Tuning for Software Analytics:is it Really Necessary?”, Information 
and Software Technology, Elsevier, submitted.
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W. Fu,  T. Menzies,  X. Shen “Tuning for Software Analytics:is it Really Necessary?”, Information 
and Software Technology, Elsevier, submitted.
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Almost a 
“distinguished paper” 
at  ICSE’16…

… before it got rejected
                                  ;-(



Experiments

Tuning algorithm: Differential Evolution

Defect Learners:  From [Lessmann 2008]

• CART

• Random Forests

•  WHERE-based learner[Menzies 2013]

WHERE-based learner: fastmap[Floutsos 1995] to cluster data + decision tree

26

457 citations since 2008



Parameters in Defect Learners
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Data Sets
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10 open source java projects from PROMISE repo[Menzies 2016]: 
● ant , camel, ivy,  jedit, log4j, lucene. 

● poi, synapse, velocity, xerces.



How to Design Experiment
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Cross-Validation 



How to Design Experiment
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Cross-Validation 

● Slow (e.g.leave-one-out)



How to Design Experiment
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Cross-Validation 

● Slow (e.g.leave-one-out)

● Mix up older data and newer data 

Data from the past might be 
used to test on future data 



Our Design
• Incremental learning approach
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Our Design
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ant 1.3 ant 1.4 ant 1.5 ant 1.6 ant 1.7



Tuning Goals
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Pd = D/(B+D)
Pf = C/(A+C)
Precision = D/(D+C)
F-measure = 2* pd*precision/(pd+precision)



Tuning Goals

38

Pd = D/(B+D)
Pf = C/(A+C)
Precision = D/(D+C)
F-measure = 2* pd*precision/(pd+precision)



Training 
Data 

Testing
Data

Tuning 
Data

DE
Evaluations

Tunings

Build

Optimized Tunings

Test

Test

Phase I

Phase II
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Experiment

Build

Our results are 
from here
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Research Questions



Does Tuning Improve Performance?
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Tuning Goal
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Tuning Goal

For each point/data set:
Y = goal(tuned_learner) - goal(untuned_learner)

Y > 0: tuning improves the performance

Y< 0: tuning does worse

Good

Bad
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Tuning Goal

For each point/data set:
Y = goal(tuned_learner) - goal(untuned_learner)

Y > 0: tuning improves the performance

Y< 0: tuning does worse

17 data sets, sorted by 
improvements(x-axis)

Good

Bad
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Tuning Goal

For each point/data set:
Y = goal(tuned_learner) - goal(untuned_learner)

Y > 0: tuning improves the performance

Y< 0: tuning does worse

17 data sets, sorted by 
improvements(x-axis)

Lines are sorted independently, 
the right side is always greater 
than the left sigd

Good

Bad



Does Tuning Improve Performance?
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Research Questions



Does Tuning Change Learners’ Rank?

48Tuning Goal
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Test Data
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Test Data

Best result in bold
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Test Data

Results of tuning parameters

Best result in bold
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52Tuning Goal

Test Data

Results of tuning parameters

Best result in bold

Results of default parameters



Does Tuning Change Learners’ Rank?
Random Forests is better than CART for defect 
prediction[Lessmann 2008].
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RF is better than CART in 12/17 data sets



Does Tuning Change Learners’ Rank?
Random Forests is better than CART for defect 
prediction[Lessmann 2008].
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RF is better than CART in 12/17 data sets

After Tuning

RF is better than CART in 5/17 data sets



Does Tuning Change Learners’ Rank?

56SAME pattern found in F-measure results

Random Forests is better than CART for defect 
prediction[Lessmann 2008].

RF is better than CART in 16/17 data sets

After Tuning

RF is better than CART in 9/17 data sets
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Research Questions
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Research Questions



Is Tuning Impractically Slow?

Evaluations/Runtimes for tuned and default learners with DE(in sec), optimizing for F 59

Runtimes in sec
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# of evaluations



Is Tuning Impractically Slow?

61

Evaluations:
 50~100

Evaluations/Runtimes for tuned and default learners with DE(in sec), optimizing for F



Is Tuning Impractically Slow?

Runtimes for tuned and default learners with DE and GridSearch(in sec), optimizing for F & precision
62

SECONDS 22 days

3.7 hours
42 hours

1 hour
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Research Questions



64

Research Questions



Should We Use “off-the-shelf” Tunings?

Select four representatives

● threshold: 0.5

● infoPrune: 0.33

● min_Size : 0.5

● wriggle: 0.2 65
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Tuning Goal



Should We Use “off-the-shelf” Tunings?

Default settings

● threshold: 0.5

● infoPrune: 0.33

● min_Size : 0.5

● wriggle: 0.2

67

Tuning Goal

y axis is the values  of 
this parameter for 
each test data  



Should We Use “off-the-shelf” Tunings?

Default settings

● threshold: 0.5

● infoPrune: 0.33

● min_Size : 0.5

● wriggle: 0.2

68

Tuning Goal

y axis is the values  of 
this parameter for 
each test data  

17 data sets, sorted 
by y values for each 
parameter.



Should We Use “off-the-shelf” Tunings?
● Tunings learned were different 

○ in different data sets 

○ for different goals. 

● Tunings learned by DE were often very different to 
the default.

○ threshold: 0.5

○ min_Size : 0.5

○ infoPrune: 0.33

○ wriggle: 0.2
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   Really?
 I have a question!



Review
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Improvements of tuned learners
over untuned learners.
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Harder and Harder Problems
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Defect Prediction

Text Mining

Deep Learning
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● What to tune?

○ Data Mining algorithms

○ Feature processing

■ Tfidf

■ L2norm

■ Hashing trick

■ …..

● Work with Zhe, Rahul, Di, etc….LN people!

Bug report:[Wang’ 2008, Anvik’ 2006, Guo’ 2010]
Email:[Bacchelli 2011, Dredze 2006]
Source code:[Tan’ 2012, Yang’ 2012, Shridihara’2011]



Deep Learning

84

● Code suggestion[White 2015]

● Buggy files localization[Lam 2015]

● What to tune?

○ number of hidden layer, 

○ learning rate,

○ amount of regularization

○ ...

● Work with Prof.Tien Nguyen (ISU)



Improve tuning performance

• Work with JC Nam
• Cluster data to transfer knowledge 

• Improve heterogeneous defect prediction.

• Relevancy-based optimization? 
• Cluster tuning/training data

• Select clusters that are nearest neighbors to testing as tuning/training data.

• Apply those tunings in testing. 
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