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ABSTRACT
“Transfer learning”: is the process of translating quality predictors
learned in one data set to another. Transfer learning has been the
subject of much recent research. In practice, that research means
changing models all the time as transfer learners continually ex-
change new models to the current project.

This paper offers a very simple “bellwether” transfer learner.
Given N data sets, we find which one produces the best predic-
tions on all the others. This “bellwether” data set is then used for
all subsequent predictions (or, until such time as its predictions start
failing–at which point it is wise to seek another bellwether).

Bellwethers are interesting since they are very simple to find (just
wrap a for-loop around standard data miners). Also, they simplify
the task of making general policies in SE since as long as one bell-
wether remains useful, stable conclusions for N data sets can be
achieved just by reasoning over that bellwether.

From this, we conclude (1) this bellwether method is a useful
(and very simple) transfer learning method; (2) “bellwethers” are
a baseline method against which future transfer learners should be
compared; (3) sometimes, when building increasingly complex au-
tomatic methods, researchers should pause and compare their sup-
posedly more sophisticated method against simpler alternatives.

CCS Concepts
•Software and its engineering ! Software creation and manage-
ment;
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1. INTRODUCTION
When building software quality predictors, it might be best to

look are more than just the local data. Researchers in transfer
learning report that data from other projects can yield better pre-
dictors than just using local data [1]. This is especially true when
the local data is very scarce. For example, consider a new project
based on a technology that, previously, has not been used at this

site. If that technology that has been extensively explored else-
where, then it makes good sense to “borrow” other people’s data in
order to import other people’s quality predictors to the new project.

There are many transfer learning methods such as the the dimen-
sionality transform approaches of Nam, Jing et al. [2–4] and the
similarity-based approaches of Kocaguneli, Peters and Turhan et
al. [1, 5–7]. In both approaches, when new code modules are cre-
ated, these approaches comment on code quality using examples
taken from similar projects.

Rahman et al. [8] warn that if quality predictors are always being
updated based on the specifics of new data, then those new predic-
tors may suffer from over-fitting. Such over-fitted models are “brit-
tle” in the sense that they can undergo constant changes when new
data arrives. That is:

When learning from all available data , then what we
learn may be always changing whenever the available
data is changed.

Such updates are very common and occur when when considering
newly constructed code modules or when we are learning using
data from other, newly available, projects (for details on this, see
§2.2 and the discussion on the Burak filter).

Conclusion instability is unsettling for software project man-
agers struggling to find general policies. Such instability prevents
project managers offering clear guidelines on many issues includ-
ing (a) when some module be inspected; (b) when modules should
be refactored; (c) where to focus expensive testing procedures; (d)
what return-on-investment might we expect due to decreased de-
fects after purchasing some expensive tool; etc.

How to support those managers, who seek stability in their con-
clusions, while also allowing new projects to take full benefit from
data arriving from all the other projects constantly being completed
by other programmers? Perhaps if we cannot generalize from all
data, a more achievable goal is to stabilize the pace of conclusion
change. While it may be a fool’s errand and wait for eternal and
global SE conclusions, one possible approach is for organizations
to declare some prior project as the “bellwether” 1 that offers pre-
dictions that generalize across N projects.

This paper defines and distinguish the bellwether effect from the
bellwether method:

• The bellwether effect states that when a community of pro-
grammers work on a set of projects, then within that commu-
nity there exists one exemplary project, called the bellwether,
which can define quality predictors for the other projects.

• The bellwether method searches for that exemplar project and
applies it to all future data generated by that community.

1According to the Oxford English Dictionary, the “bellwether”
is the leading sheep of a flock, with a bell on its neck.
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The rest of this paper explores bellwethers. After some back-
ground notes, as well as an explanation of the bellwether method,
we ask and answer five research questions:

• RQ1: How rare are “Bellwethers”? We explore four “com-
munities” of data containing 3, 5, 5 and 10 projects each. In a
result consistent with bellwethers not being rare, we find that
all these communities have a bellwether; i.e. a single data
set from which a superior quality predictor can be generated
from the rest of that community.

• RQ2: How does the bellwether data set fare against local
models? The alternate to transfer learning is to just use the
local data to build a quality predictor. To answer this research
question, we compare the predictions from the bellwether to
predictions from just the local data. In our experiments, the
bellwether predictions proved to be better than those gener-
ated from the local data.

• RQ3: Is bellwether better than other transfer learning
methods? To answer this question, we compare the data
predictor generated from the bellwether to the predictions
generated from other transfer learning methods. Our bell-
wether’s predictions were observed to be superior to those
other transfer learners.

• RQ4: Can we predict which data set will be bellwether?
To answer this question, we tried reasoning about the data
in candidate bellwethers to see if they shared some property
that indicates they will be a useful bellwether. The results
of this investigation were not positive since we could find no
such property. Hence, our recommended method for finding
the bellwether is to try it out against other data sets.

• RQ5: How much data is required to find the bellwether?
Since RQ4 failed to find a statistical property that selects for
bellwethers, then the only way we have to find bellwethers
is to compare the performance of pairs of data sets from
different projects. A natural question that arises from this
experimental approach is RQ5. Our experiments show that
program managers need not wait very long to find their bell-
wethers – a few dozen examples of defective code modules
can suffice for creating and testing candidate bellwethers.

From the above, we conclude that the original motivation for trans-
fer learning in SE might have been misguided. Initial experiments
with transfer learning in SE built defect predictors from the union
of data taken from multiple projects. That approach lead to some
very poor results so researchers turned to relevancy filters to find
what small subset of the data was relevant to the current prob-
lem [7]. These relevancy filters generated adequate predictions but
introduced the instability problem that motivates this paper. Our
bellwether results suggest that relevancy filtering would never have
been necessary in the first place if researchers had instead hunted
for bellwethers.

2. BACKGROUND

2.1 Defect Prediction
Our example quality predictors are static code attributes defect

prediction. Hall et al. offers an extensive review on the defect
prediction literature [9]. For an extensive experimental comparison
of different learning algorithms for defect prediction, see Lessmann
et al. [10]. For brief introduction notes on defect predition, see the
rest of this section.

Human programmers are clever, but flawed. Coding adds func-
tionality, but also defects, so software will crash (perhaps at the
most awkward or dangerous time) or deliver wrong functionality.

Since programming introduces defects into programs, it is im-
portant to test them before they are used. Testing is expensive.
According to Lowry et al. software assessment budgets are finite
while assessment effectiveness increases exponentially with assess-
ment effort [11]. Exponential costs quickly exhaust finite resources
so standard practice is to apply the best available methods only on
code sections that seem most critical. Any method that focuses on
parts of the code can miss defects in other areas so some sampling
policy should be used to explore the rest of the system. This sam-
pling policy will always be incomplete, but it is the only option
when resources prevent a complete assessment of everything.

One such lightweight sampling policy is defect predictors learned
from static code attributes. Given software described in the at-
tributes of Figure 1, data miners can learn where the probability
of software defects is highest.

The rest of this section argues that such defect predictors are easy
to use, widely-used, and useful to use.

Easy to use: Static code attributes can be automatically col-
lected, even for very large systems [12]. Other methods, like man-
ual code reviews, are far slower and far more labor-intensive. For
example, depending on the review methods, 8 to 20 LOC/minute
can be inspected and this effort repeats for all members of the
review team, which can be as large as four or six people [13].
Widely used: Researchers and industrial practitioners use static at-
tributes to guide software quality predictions. Defect prediction
models have been reported at Google [14]. Verification and vali-
dation (V&V) textbooks [15] advise using static code complexity
attributes to decide which modules are worth manual inspections.

Useful: Defect predictors often find the location of 70% (or
more) of the defects in code [16]. Defect predictors have some
level of generality: predictors learned at NASA [16] have also been
found useful elsewhere (e.g. in Turkey [17, 18]). The success of
this method in predictors in finding bugs is markedly higher than
other currently-used industrial methods such as manual code re-
views. For example, a panel at IEEE Metrics 2002 [19] concluded
that manual software reviews can find ⇡60% of defects. In an-
other work, Raffo documents the typical defect detection capability
of industrial review methods: around 50% for full Fagan inspec-
tions [20] to 21% for less-structured inspections.

Not only do static code defect predictors perform well compared
to manual methods, they also are competitive with certain auto-
matic methods. A recent study at ICSE’14, Rahman et al. [21]
compared (a) static code analysis tools FindBugs, Jlint, and Pmd
and (b) static code defect predictors (which they called “statistical
defect prediction”) built using logistic regression. They found no
significant differences in the cost-effectiveness of these approaches.
Given this equivalence, it is significant to note that static code de-
fect prediction can be quickly adapted to new languages by building
lightweight parsers that find information like Figure 1. The same is
not true for static code analyzers– these need extensive modifica-
tion before they can be used on new languages.

2.2 Defect Prediction and Transfer Learning
When there is insufficient data to apply data miners to learn de-

fect predictors, transfer learning can be used to transfer lessons
learned from other source S projects to the target project T .

Initial experiments with transfer learning offered very pessimistic
results. Zimmermann et al. [22] tried to port models between two
web browsers (Internet Explorer and Firefox) and found that cross-
project prediction was still not consistent: a model built on Firefox
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wmc weighted meth-
ods per class

dit depth of inheri-
tance tree

noc number of chil-
dren

cbo coupling be-
tween objects

increased when the methods of one
class access services of another.

rfc response for a
class

number of methods invoked in re-
sponse to a message to the object.

lcom lack of cohe-
sion in methods

number of pairs of methods that do
not share a reference to an instance
variable.

ca afferent cou-
plings

how many other classes use the spe-
cific class.

ce efferent cou-
plings

how many other classes is used by
the specific class.

npm number of pub-
lic methods

locm3 another lack of
cohesion mea-
sure

if m, a are the number of
methods, attributes in a
class number and µ(a) is the
number of methods accessing
an attribute, then lcom3 =
(( 1

a

Pa
j µ(aj))�m)/(1�m).

loc lines of code
dam data access ratio of private (protected) attributes

to total attributes
moa aggregation count of the number of data declara-

tions (class fields) whose types are
user defined classes

mfa functional
abstraction

number of methods inherited by a
class plus number of methods ac-
cessible by member methods of the
class

cam cohesion
amongst classes

summation of number of different
types of method parameters in ev-
ery method divided by a multiplica-
tion of number of different method
parameter types in whole class and
number of methods.

ic inheritance cou-
pling

number of parent classes to which
a given class is coupled (includes
counts of methods and variables in-
herited)

cbm coupling be-
tween methods

total number of new/redefined meth-
ods to which all the inherited meth-
ods are coupled

amc average method
complexity

e.g. number of JAVA byte codes

max_cc maximum Mc-
Cabe

maximum McCabe’s cyclomatic
complexity seen in class

avg_cc average Mc-
Cabe

average McCabe’s cyclomatic com-
plexity seen in class

defect defect Boolean: where defects found in
post-release bug-tracking systems.

Figure 1: Sample static code attributes.

was useful for Explorer, but not vice versa, even though both of
them are similar applications. Turhan’s initial experimental results
were also very negative: given data from 10 projects, training on
S = 9 source projects and testing on T = 1 target projects resulted
in alarming high false positive rates (60% or more).

Subsequent research realized data had to be carefully sub-sampled
and possibly transformed before quality predictors from one source
to target. That work can be divided two ways:

• Homogeneous vs heterogeneous;

• Similarity vs dimensionality transform.

Homogenous, heterogenous transfer learning operates on source
and target data that contain the same, different attribute names (re-
spectively). This paper focuses on homogenous transfer learning,
for the following reason. As discussed in the introduction, we are
concerned with an IT manager trying to propose general policies
across their IT organization. Organizations are defined by what
they do—which is to say that within one organization there is at
some overlap in task, tools, personnel, and development platforms.
Hence, data can contain overlapping attributes. As evidence for
this, the data sets explored in this paper fall into 4 communities
and each community has many overlapping attributes (specifically,
our four communities have 20, 23, 26,61 overlapping attributes, see
Figure 2).

As to other kinds of transfer learning, similarity approaches trans-
fer some subset of the rows or columns of data from source to tar-
get. For example, the Burak filter [7] builds its training sets by
finding the k = 10 nearest code modules in S for every t 2 T .

(Aside: Note that the Burak filter suffers from the instability
problems described in the introduction: whenever the source or tar-
get is updated, data miners will learn a new model since different
code modules will satisfy the k = 10 nearest neighbor criteria.)

Other researchers [5, 6] doubted that a fixed value of k was ap-
propriate for all data. That work recursively bi-clustered the source
data, then pruned the cluster sub-trees with greatest “variance” are
pruned (where the “variance” of a sub-tree is the variance of the
conclusions in its leaves). This method combined row selection
with row pruning (of nearby rows with large variance). Other sim-
ilarity methods [23] combine domain knowledge with automatic
processing: e.g. data is partitioned using engineering judgment be-
fore automatic tools cluster the data. To address variations of soft-
ware metrics between different projects, the original metric values
were discretized by rank transformation according to similar degree
of context factors.

Similarity approaches uses data in its raw form. Dimensionality
transform methods manipulate the raw source data until it matches
the target. In the case of defect prediction, a “dimension” might be
one of the static code attributes of Figure 1. For example, Nam et
al. [2] originally proposed an optimization-based method that used
dimensionality rotational and expansion/contraction to align the
source dimensions to the target [2]. Subsequently, that team found
they could dispense with the optimizer [3] by combining feature
selection on the source/target following by a Kolmogorov-Smirnov
test to find associated subsets of columns. Other researchers take
a similar approach, prefer instead a canonical-correlation analysis
(CCA) to find the relationships between variables in the source and
target data [24].

Our reading of the literature is that dimensionality transform
is used mostly in heterogeneous, and not homogeneous, transfer
learning. Hence, our experiments use similarity-based methods.

3. BELLWETHERS: A NEW APPROACH
The previous section sampled some of the work on transfer learn-

ing in software engineering. This rest of this paper asks the ques-
tion “is the complexity of §2.2 really necessary?”

To answer this question, we propose a process that assumes some
software manager has a watching brief over N projects (which we
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will call the community “C”). As part of those duties, they can
access issue reports and static code attributes of the community.
Using that data, this manager will apply three operators- GENER-
ATE, APPLY, MONITOR:

1. GENERATE: Using historical data, check if the community
has bellwether. See if data miners can predict for the number
of issues, given the static code attributes.

• For all pairs of data from projects Pi, Pj 2 C;
• Predict for issues in Pj using a quality predictor learned

from data taken from Pi;
• Report a bellwether if one Pi generates the most accu-

rate predictions in a majority of Pj 2 C.

2. APPLY: Using the bellwether, generate quality predictors on
new project data. That is, having learned the bellwether on
past data, we now apply it to future projects.

3. MONITOR: Go back to step 1 if the performance statistics
seen during APPLY start decreasing.

Note the simplicity of this approach– just wrap a for-loop around
some data miners. Note also that these steps use none of the ma-
chine described in §2.2.

4. RESEARCH QUESTIONS

RQ1: How rare are “Bellwethers”?
If bellwethers occur infrequently, we cannot rely on them. Hence,
this question explores how common are bellwethers. To this end,
we applied the GENERATE method described above to the four
communities shown in Figure 2. This data was selected according
to the following rules:

• The data has been used in prior transfer learning paper; e.g. [3];

• The communities are quite diverse; e.g. the NASA projects
are proprietary while the others are open source projects.

• In addition, the projects also vary in their granularity of data
description (file, class, or function level).

RQ2: How does the bellwether fare against lo-
cal models?
One premise of transfer learning is that using data from other projects
is as useful, or better, then using data from the local project. This
research questions tests that this premise holds for bellwethers.

To answer this question, we implemented APPLY as follows.
One of our communities (APACHE) comes in multiple versions;
e.g. in APACHE, the XALAN system has versions 2.4, 2.5, 2.6,
2.7. Each versions are historical releases where version i was writ-
ten before version j where j > i. RQ2 was explored in this com-
munity as follows:

• The last version of each project was set aside as a hold-out.

• GENERATE was then applied across the older versions within
the community to find the bellwether.

• A defect predictor was then learned from the older data seen
in the bellwether.

• The predictor was then applied to the latest data.

We compare the above to local learning; i.e. for each project:

• The last version of that project was set aside as a hold-out;

• The older versions of that project were then used to train a
defect predictor.

• The predictor was then applied to the latest data.

Note that:

• The local learner only ever uses data from earlier in the same
project;

• While the bellwether uses data from any member of the com-
munity.

RQ3: Is bellwether better than other transfer
learning methods?
Our reading of the literature is that dimensionality-reduction trans-
fer learning is the preferred choice for heterogeneous transfer learn-
ing while, for the homogeneous transfer learning studied here, sim-
ilarity based approaches are the norm. Hence, we compare bell-
wether against two similarity based transfer learners: the first clas-
sic Burak filter from 2009 [7] as well as a more recent mixed ap-
proach that uses a small sample of the target along with the avail-
able source data [25].

RQ4: Can we predict which data set will be
bellwether?
This question tries to reason about bellwether dataset to identify
characteristics, if any, that make it unique.

To do this, we compare the distributions of the code quality met-
rics that make up the bellwether data with that of the other datasets.
We employ a multiple comparison test [26] [27].

RQ5: How much data is required to find the
bellwether?
A core process in all the above is the GENERATE step. If this
requires too much data to find bellwethers, then that would indicate
developers should eschew bellwethers in favor of standard transfer
learning. Hence, it is important to ask how much data is required
before a community can find adequate bellwethers.

5. METHODOLOGY

5.1 Benchmark Datasets
This study uses 120 data sets grouped into 4 communities taken

from previous transfer learning studies.. The projects measure de-
fects at defect levels of granularity ranging from function-level to
file-level Figure 2 summarizes all the communities of datasets used
in our experiments.

For the reasons discussed in §2.2, we explore homogeneous trans-
fer learning using the attributes shared by a community. That is,
this study explores intra-community transfer learning and not cross-
community heterogeneous transfer learning.

The first dataset, AEEEM, was used by [3]. This dataset was
gathered by D’Amborse et al. [28], it contains 61 metrics: 17 object-
oriented metrics, 5 previous-defect metrics, 5 entropy metrics mea-
suring code change, and 17 churn-of-source code metrics.

The RELINK community data was obtained from work by Wu et
al. [29] who used the Understand tool 2, to measure 26 metrics that
calculate code complexity in order to improve the quality of defect
prediction. This data is particularly interesting because the defect

2http://www.scitools.com/products/
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Community Dataset # of instances # metrics Nature
Total Bugs (%)

AEEEM

EQ 325 129 (39.81)

61 Class
JDT 997 206 (20.66)

LC 399 64 (9.26)

ML 1826 245 (13.16)

PDE 1492 209 (13.96)

Relink
Apache 194 98 (50.52)

26 FileSafe 56 22 (39.29)

ZXing 399 118 (29.57)

Apache

Ant 1692 350 (20.69)

20 Class

Ivy 704 119 (16.90)

Camel 2784 562 (20.19)

Poi 1378 707 (51.31)

Jedit 1749 303 (17.32)

Log4j 449 260 (57.91)

Lucene 782 438 (56.01)

Velocity 639 367 (57.43)

Xalan 3320 1806 (54.40)

Xerces 1643 654 (39.81)

NASA

cm 998 126 (12.63)

23 Function
jm 25157 5103 (20.28)

kc 588 108 (18.37)

mc 13630 292 (2.14)

mw 770 81 (10.52)

Figure 2: 120 Defect Datasets from 4 communities. The # met-
rics columns shows the number of metrics that are shared by
all members of that community.

information in it has been manually verified and corrected. It has
been widely used in defect prediction [3] [29] [30] [31] [32].

In addition to this, we explored two other communities of datasets
from the PROMISE repository3. The first set of group contains de-
fect measures from several Apache projects. It was gathered by
Jureczko et al. [33]. This dataset contains records the number of
known defects for each class using a post-release bug tracking sys-
tem. The classes are described in terms of 20 OO metrics, including
CK metrics and McCabes complexity metrics. Each dataset in the
Apache community has several versions. There are a total of 38
different datasets. For more information on this dataset see [34].

Further, we used 5 proprietary datasets from NASA containing
similar metrics [35]. For the sake of consistency, we cleaned up
the dataset so that they all share the same metrics. These datasets
measure McCabe and Halstead’s cyclomatic complexity metrics in
addition to other complexity metrics such as parameter count and
percentage comments.

5.2 Learning Methods
There are many ways to predict defects. A comprehensive study

on the same was conducted by Lessmann et al. [10]. They endorsed
the use of Random Forests [36] for defect prediction over several
other methods. Random Forests is an ensemble learning method
that builds several decision trees on randomly chosen subsets of
data. The final reported prediction is the mode of predictions by
the trees.

3http://openscience.us/repo/

It is known that the fraction of defects in the training samples
affects the performance of defect predictors. Figure 2 shows that
in most datasets, the percentage of defective samples varies be-
tween 10% to 20% (except in a few, projects like log4j where it
is 58%). Handling this class imbalance has been shown to improve
the quality of defect prediction. Pelayo and Dick [37] report that
the defect prediction is improved by SMOTE [38]. SMOTE works
by under-sampling majority-class examples and over-sampling mi-
nority class examples to balance the training data prior to apply-
ing prediction models. After an extensive experimentation, in this
study, we:

• Randomly sub-sampled non-defective, defective examples un-
til the training data had only 100,50 non-defective, defective
examples (respectively).

Important methodological note: sub-sampling was only applied to
training data (so the test data remains unchanged).

5.3 Evaluation Strategy
In our context, we consider modules with defects as positive in-

stances and those without as negative instances. Prediction models
are not ideal, they therefore need to be evaluated in terms of statisti-
cal performance measures. On classification we construct a confu-
sion matrix, with this we can obtain several performance measures
such as: (1) Accuracy: Percentage of correctly classified classes
(both positive and negative); (2) Recall or pd: percentage of the
target classes (defective instances) predicted. The higher the pd,
the fewer the false negative results. ; (3) False alarm or pf : per-
centage of non-defective instances wrongly identified as defective.
Unlike pf, lower the pd better the quality; (4) Precision: probabil-
ity of predicted defects being actually defective. Either a smaller
number of correctly predicted faulty modules or a larger number
of erroneously predicted defect-free modules would result in a low
precision.

There are several trade-offs between the metrics described above.
There is a trade-off between recall rate and false alarm rate. There
is also a trade-off between precision and recall. These measures
alone do not paint a complete picture of the quality of the predic-
tor. Therefore, it is very common to apply performance metrics that
incorporate a combination of these metrics. One such approach is
to build a Receiver Operating Characteristic (ROC) curve. ROC
curve is a plot of Recall versus False Alarm pairing for various
predictor cut-off values ranging from 0 to 1. The best possible pre-
dictor is the one with an ROC curve that rises as steeply as possible
and plateaus at pd=1.

Ideally, For each curve, we can measure the Area Under Curve
(AUC), to identify the best training dataset. Unfortunately, building
an ROC is not straight forward in our case. We have used Random
Forest for predicting defects owing to it’s superior performance
over several other predictors [10]. Random Forest lacks a thresh-
old parameter, it is capable of producing just one point on the ROC
curve. It is therefore not possible to compute AUC. In a previous
work, Ma and Cukic [39] have shown that distance from perfect
classification (ED) can be substituted for AUC in cases where a
ROC curve cannot be generated. ED measures the distance be-
tween obtained (Pd, Pf) pair and the ideal point on the ROC space
(1, 0), weighted by cost function ✓. It is given by:

ED =
p

✓.(1� Pf)2 + (1� ✓).Pd2 (1)

Note that for ED, the smaller the distance, the better the predictor.
Setting ✓ to (e.g.) 0.5 places equal weights on Pd and Pf. From

a software engineering perspective, it is more important to reduce
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misclassification of defective module that to reduce false classifica-
tion of fault-free modules. With this in mind, we have set ✓ as 0.6,
thereby placing more weight on Pd.

In this work, we report only on ED-measures. However, for the
reader of this work who wishes to use different performance mea-
sures, we have made available a replication package4 in order to
facilitate the computation of other statistical measures.

5.4 Statistics
To overcome the inherent randomness introduced by Random

Forests and SMOTE, we use 40 repeated runs, each time with a
different random number seed (we use 40 since that is more than
the 30 samples needed to satisfy the central limit theorem). The
repeated runs provide us with a sufficiently large sample size to
statistically compare all the datasets. Each run collects the values
of ED (Equation 1). (Note: We refrain from performing a cross val-
idation because the process tends to mix the samples from training
data (the bellwether) and the test data (the other projects), which
defeats the purpose of this study.)

To rank these 40 numbers collected as above, we use the Scott-
Knott test recommended by Mittas and Angelis [40]. Scott-Knott
is a top-down clustering approach used to rank different treatments.
If that clustering finds an interesting division of the data, then some
statistical test is applied to the two divisions to check if they are
statistically significant different. If so, Scott-Knott recurses into
both halves.

To apply Scott-Knott, we sorted a list of l = 40 values of Equa-
tion 1 values found in ls = 4 different methods. Then, we split l
into sub-lists m,n in order to maximize the expected value of dif-
ferences in the observed performances before and after divisions.
E.g. for lists l,m, n of size ls,ms, ns where l = m [ n:

E(�) =
ms

ls
abs(m.µ� l.µ)2 +

ns

ls
abs(n.µ� l.µ)2

We then apply a statistical hypothesis test H to check if m,n
are significantly different (in our case, the conjunction of A12 and
bootstrapping). If so, Scott-Knott recurses on the splits. In other
words, we divide the data if both bootstrap sampling and effect size
test agree that a division is statistically significant (with a confi-
dence of 99%) and not a small effect (A12 � 0.6).

For a justification of the use of non-parametric bootstrapping,
see Efron & Tibshirani [41, p220-223]. For a justification of the
use of effect size tests see Shepperd and MacDonell [42]; Kamp-
enes [43]; and Kocaguenli et al. [44]. These researchers warn that
even if a hypothesis test declares two populations to be “signifi-
cantly” different, then that result is misleading if the “effect size”
is very small. Hence, to assess the performance differences we first
must rule out small effects using A12, a test recently endorsed by
Arcuri and Briand [45].

6. RESULTS

6.1 RQ1: How rare are “Bellwethers”?
Figures 3 show the results of GENERATE within our four com-

munities. It is immediately noticeable that for each community
there is one data set that provides consistently better predictions
when compared to other datasets. For example: Apache’s bell-
wether is Lucene; NASA’s bellwether is MC; AEEEM’s bellwether
is LC; and Relink’s bellwether is Safe. Thhat is, all the communi-
ties studied here have a bellwether. Hence:

4https://goo.gl/jCQ1Le

Research answer 1
Our results suggest bellwethers are not rare.

6.2 RQ2: How does the bellwether fare against
local models?

Figure 4 compares ED scores of defect predictors built on local
models against those built with a bellwether. For this question, we
used data from the Apache community since it has the versions
required to test older data against newer data.

As see in the figure, the prediction scores with the bellwether is
very encouraging in case of the Apache datasets. In all cases, ex-
cept for Jedit, defect prediction models constructed with the Lucene
bellwether performs as well as local data. In some cases (Xerces),
Lucene performs much better than local data. Therefore, the an-
swer to the second research question is:

Research answer 2
For projects evaluated with the same quality metrics, training a
defect prediction model with the Bellwether is just as good as
doing so with local data.

RQ3: Is bellwether better than other transfer
learning methods?
Figure 5 shows results comparing three homogenous transfer learn-
ing methods: bellwether, the classic Burak filter (denoted “Turhan09”)
and Turhan’s subsequent update to that method (denoted “Turhan11”).
We note that in usual case, bellwethers perfrom much better than
those other methods. Hence:

Research answer 3
The bellwether method out-performs standard homogenous
transfer learning methods.

6.3 RQ4: Can we predict which data set will
be bellwether?

To study existing trends in the bellwether data, we tried to iden-
tify the existence of statistical similarities between the distributions
of the bellwether samples and the samples from our test cases. To
do this, we performed a multiple comparison test using Kruskal-
Wallis H-Test. The Kruskal-Wallis H-test tests the null hypothesis
that the population median of two or more groups are equal. It is a
non-parametric version of the ANOVA test.

In each group, we compared the distribution of the metric values
of bellwether dataset and all other datasets. If the null hypothe-
sis, as formulated above, is rejected, that means there doesn’t exist
a statistically significant similarity between medians of the bell-
wether and the test data for that metric.

If the bellwether bore any resemblance to the test data, we would
expect to see several metrics with statistically significant similarity.
For instance, in the Apache projects in Figure 6, we noticed that
there doesn’t exist any noticeable similarities. Further, as high-
lighed in Figure 7, the same effect was noticed in all the other
projects as well. A mere reflection on the distribution or feature
importance is not sufficient to determine of a specific dataset is a
bellwether or not. Therefore, our response to the third research
question is as follows:
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Ant Camel Ivy Poi Velocity Xalan Xerces Jedit Log4j Lucene

Med Iqr Med Iqr Med Iqr Med Iqr Med Iqr Med Iqr Med Iqr Med Iqr Med Iqr Med Iqr

Ant 0.33 0.01 0.32 0.01 0.28 0.01 0.28 0.02 0.3 0.01 0.3 0.01 0.34 0.01 0.28 0.02 0.28 0

Camel 0.61 0.01 0.62 0.02 0.57 0.01 0.47 0.01 0.53 0.01 0.42 0.01 0.71 0.03 0.42 0.02 0.4 0.01

Ivy 0.41 0.01 0.39 0.02 0.43 0.03 0.33 0.01 0.38 0.02 0.37 0.01 0.51 0.04 0.35 0.01 0.32 0.01

Poi 0.6 0.03 0.54 0.02 0.57 0.03 0.59 0.03 0.42 0.04 0.33 0.01 0.66 0.03 0.36 0.01 0.33 0.01

Velocity 0.49 0.02 0.42 0.01 0.64 0.01 0.67 0.01 0.54 0.01 0.44 0.02 0.73 0.02 0.51 0.01 0.49 0.01

Xalan 0.56 0.01 0.52 0.02 0.62 0.02 0.59 0.01 0.56 0.01 0.46 0.01 0.66 0.01 0.46 0.01 0.45 0

Xerces 0.71 0.01 0.51 0.01 0.67 0.01 0.62 0.02 0.62 0.01 0.55 0.01 0.71 0.01 0.49 0.01 0.48 0.01

Jedit 0.35 0.01 0.38 0.01 0.48 0.01 0.37 0.01 0.47 0.01 0.28 0 0.37 0 0.31 0.01 0.34 0.01

Log4j 0.62 0.01 0.42 0.01 0.59 0.01 0.56 0 0.39 0.01 0.53 0.02 0.39 0 0.68 0.03 0.49 0.03

CM JM KC MW MC

Med Iqr Med Iqr Med Iqr Med Iqr Med Iqr

CM 0.41 0 0.69 0 0.49 0 0.37 0

JM 0.77 0 0.65 0 0.69 0 0.38 0

KC 0.79 0 0.44 0 0.59 0 0.4 0

MW 0.62 0 0.57 0 0.41 0 0.32 0

EQ JDT ML PDE LC

Med Iqr Med Iqr Med Iqr Med Iqr Med Iqr

EQ 0.62 0.01 0.35 0.01 0.4 0.01 0.34 0.01

JDT 0.36 0.02 0.28 0.03 0.28 0.01 0.28 0

ML 0.42 0.01 0.51 0.02 0.39 0.02 0.37 0.01

PDE 0.32 0.01 0.54 0.01 0.34 0.01 0.36 0.01

Apache ZXing Safe

Med Iqr Med Iqr Med Iqr

Apache 0.51 0.09 0.46 0

Zxing 0.79 0 0.51 0

Figure 3: Identifying the “Bellwether”, This figure compares the prediction performance of the bellwether (highlighted in bold)
against other datasets. “Med” refers to the median value seen in 40 repeats. “IQR” refers to the 75th-25th percentile seen in those
40 repeats (and the IQR is very small). All performance figures here are the ED from Equation 1 so lower values are better. Cells
highlighted in gray produce the best performance with the highest Scott-Knott ranks.

Bellwether Local

Med Iqr Med Iqr

Apache

Ant 0.3 0.01 0.36 0.01

Camel 0.37 0.02 0.43 0.01

Poi 0.23 0.02 0.36 0.01

Xalan 0.36 0.01 0.45 0

Xerces 0.44 0.01 0.62 0.01

Ivy 0.28 0.01 0.28 0.01

Velocity 0.41 0.01 0.41 0

Log4j 0.39 0.01 0.39 0.01

Jedit 0.43 0.01 0.38 0.02

Figure 4: Bellwether vs. Local Data. Performance scores are
ED so lower values are better. We note that in all datasets except
for Jedit, the performance of Bellwether dataset is just as well
as local data.

Research answer 4
Although there seemingly always exists a Bellwether dataset,
identifying this dataset by reflecting on distribution of the data
is not trivial.

RQ5: How much data is required to find the
bellwether?
As yet, we do not have a theoretical analysis offering a lower bound
for the the number of examples required for finding the bellwethers.
What we do have is the following empirical observation: all the
above results were achieved using the sub-sampling methods of
§5.2; i.e. 100 randomly selected non-defective modules and 50
randomly selected defective modules. That is:

Research answer 5
Bellwethers can be found after projects have discovered a few
dozen examples of defective modules.

Bellwether Turhan09 Turhan11

Med Iqr Med Iqr Med Iqr

Apache

Ant 0.31 0.01 0.77 0.01 0.77 0.1

Camel 0.42 0.02 0.42 0.01 0.43 0.01

Ivy 0.32 0.01 0.4 0.01 0.41 0.01

Poi 0.3 0 0.42 0.01 0.48 0.04

Velocity 0.41 0.01 0.77 0 0.77 0.01

Xerces 0.51 0.01 0.77 0.01 0.77 0

Jedit 0.3 0.01 0.65 0.02 0.65 0.03

Log4j 0.48 0.01 0.43 0.01 0.57 0.06

Xalan 0.45 0.01 0.41 0 0.42 0.01

AEEEM

EQ 0.35 0.01 0.77 0 0.77 0.01

JDT 0.28 0.01 0.77 0.01 0.77 0.02

ML 0.35 0.02 0.77 0.01 0.77 0.03

PDE 0.41 0 0.75 0.01 0.76 0.02

Relink Apache 0.46 0.02 0.77 0 0.77 0.02

ZXing 0.51 0.01 0.77 0.01 0.77 0.03

NASA

CM 0.37 0 0.69 0 0.75 0.02

JM 0.38 0 0.42 0.01 0.69 0

KC 0.4 0 0.69 0 0.57 0

MW 0.32 0 0.76 0.02 0.7 0

Figure 5: Bellwether vs. Homogeneous Transfer Learning
methods (Turhan09 [7] and Turhan11 [25]). All results are ED
so lower values are better. Cells highlighted in gray indicate
datasets with superior prediction capability.

7. THREATS TO VALIDITY

7.1 Sampling Bias
Sampling bias threatens any classification experiment; what mat-

ters in one case may or may not hold in another case. For example,
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wmc dit noc cbo rfc lcom ca ce npm lcom3 loc dam moa mfa cam ic cbm amc max_cc avg_cc

ant X · · X · · · · · · · · · · · · X · · ·
camel · X · X · · · · · · · · · · · · · · · ·
ivy X · · · X · X · · · · · · · · · · · · X
jedit X · · · · · · · · · · X · · X X X · · ·
log4j · · · · X · · · · · · · · · X · · X · ·
poi · X · · · · X X · · · X · X X · · · X X
velocity · X · X X · X · X · · · · · · · · · · ·
xalan · · · X X · · · X · · · · · · · · · X X
xerces X X · · · · · · · · · · · X · · · · · X

Figure 6: Results of Kruskal-Wallis H-Test comparing the bellwether dataset (Lucene) with the other datasets from the Apache.
Each dataset contains 20 Static Code Metrics (for a description of each of these metrics, please refer to [46]). The rows contain the
test data, and the columns contain the metrics. A “X” symbol represents a significant statistical similarity (with a 95% confidence
interval) and a “.” represents a no similarity.

Group Dataset # metrics Bellwether
Significant %

AEEEM

EQ 26/61 42

LCJDT 12/61 19

ML 28/61 46

PDE 13/61 21

Relink Apache 0/26 0 Safe
ZXing 11/26 42

Apache

Ant 3/20 15

Lucene

Ivy 4/20 20

Camel 2/20 10

Poi 8/20 40

Jedit 5/20 25

Log4j 3/20 15

Velocity 5/20 25

Xalan 5/20 25

Xerces 4/20 20

NASA

cm 0/21 0

mcjm 0/21 0

kc 0/21 0

mw 0/21 0

Figure 7: Results of Kruskal-Wallis H-Test comparing the bell-
wether datasets with the test datasets.

even though we use 120 open-source data sets in this study (Fig-
ure 2) which come from several sources (Apache and NASA were
obtained from the PROMISE repository and ReLink and AEEEM
were obtained from [24]), they were all supplied by individuals.

That said, this paper shares this sampling bias problem with ev-
ery other data mining paper. As researchers, all we can do is doc-
ument our selection procedure for data (as done in §4) and suggest
that other researchers try a broader range of data in future work.

7.2 Learner Bias
For building the defect predictors in this study, we elected to use

random forests. We chose this learner because past studies shows
that, for defect prediction, the results were superior to other more
complicated algorithms [10] and can act as a baseline for other al-
gorithms.

Apart from learner choice, one limitation to our current study is
that we have focused here on homogenous transfer learning (where
the attributes in source and target have the same name). The impli-
cations for heterogeneous transfer learning (where the attributes in
source an target have different names) are no clear. We have some
initial results suggesting that an bellwether-like effect occurs when
learning across the communities of Figure 2 but those results are
very preliminary. Hence, for the moment, we would conclude:

• For the homogenous case, we recommend using bellwethers
rather than similarity-based transfer learning.

• For the heterogenous case, we recommend using dimension-
ality tranforms.

7.3 Evaluation Bias
This paper uses one measure of prediction quality, ED (see Equa-

tion 1). Other quality measures often used in software engineering
to quantify the effectiveness of prediction [39] [47] [48] (discussed
in §5.3). A comprehensive analysis using these measures is left for
future work.

7.4 Order Bias
With random forest and SMOTE, there is invariably some degree

of randomness that is introduced by both the algorithms. Random
Forest, as the name suggests, randomly samples the data and con-
structs trees which it then uses in an ensemble fashion to make
predictions.

To mitigate these biases, we run the experiments 40 times (the
reruns are greater than 30 in keeping with the central limit theo-
rem). Note that the reported variations over those runs were very
small (see the low IQR values in Tables 3, 4, and 5). Hence, we
conclude that while order bias is theoretically a problem, it is not a
major problem in the particular case of this study.

8. CONCLUSIONS AND DISCUSSION
When historical data is limited or not available (e.g. perhaps due

the project being in its infancy), developers might seek data from
other projects. Our results show that regardless of the granular-
ity of data (see the file, class, file values of Figure 2), there exists
a bellwether data set that can be used to train relatively more ac-
curate defect prediction models. This bellwether does not require
elaborate data mining methods to discover (just a for-loop around
the data sets) and can be found very early in a project’s life cycle
(after uncovering a few dozen defective code modules).
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As discussed in the introduction, the results of this paper cast
some doubts on the results that originally motivated much of the
transfer learning results in defect prediction since the original 2009
Turhan paper on the Burak filter [7]. Our bellwether results suggest
the relevancy filtering of the Burak filter would never have been
necessary in the first place if researchers had instead discovered
bellwethers.

Finally, when discussing this work, there are three frequently
asked questions:

1. Do bellwethers guarantee permanent conclusion stability?
No- and we should not expect them to. The aim of bell-
wethers is to slow, but do not necessarily stop, the pace of
new ideas in software engineering (e.g. as in the paper, new
quality prediction models). Sometimes, new ideas are es-
sential. Software engineering is a very dynamic field with a
high churn in techniques, platforms, developers and tasks. In
such a dynamic environment it is important to change with
the times. That said, changing more than necessary is not
desirable– hence this paper.

2. How to detect when bellwethers need updating? The conclu-
sion stability offered by bellwethers only lasts as long as the
bellwether remains useful. Hence, bellwether performance
must always be monitoried and, if that performance starts to
dip, then seek a new bellwether.

3. What happens if a set of data has no useful bellwether? In
that case, there are numerous standard transfer learning meth-
ods that could be used to import lessons learned from other
data [1–7,49]. That said, the result here is that all the commu-
nities of data explored by this paper had useful bellwethers.
Hence, we would recommend trying bellwethers before mov-
ing on to more complex methods.

Further to this last point, in his text on empirical software engi-
neering, Cohen [50] recommends benchmarking supposedly more
sophisticated methods against simpler alternatives. Going forward
from this paper, we would recommend that the transfer learning
community uses bellwethers as a baseline method against which
they can test more complex methods.
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